

🛓 4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand SCG & GC & C C Process Safety Sharin

Chemic

- **o** Introduction to Vibration
- Vibration Mechanism
- Fluidelastic Instability
- **o** Thermal design to avoid vibration problem

- **o** Anti-Vibration Technologies
- Case study

Introduction to Vibration

Flow-induced vibration

- > Be serious problem in many industries.
- Causes mechanism tube failure and bring to another problem such as shutdowns of plant, tube damage in petroleum, and lost chemical production due to leaking tubes.

Tube damage from flowinduced vibrations

Introduction to Vibration

Tube failure locations

- Midspan of the longest unsupported span
- Window tubes near baffle tips
- Tubes near inlet and outlet nozzles
- Tubes near outer periphery of bundle
- Tubesheet joints and near tubesheet

Vibration Mechanism

- Flow-induced vibration involves the coupling of some exciting forces with induced an elastic structure.
- Coupling occurs when the exciting frequencies <u>match</u> the tubes natural frequency.

Increasing shell side flowrate >> Excitation Energy >> match tube natural frequency >> Tube vibration

- There are three vibration mechanism.
 - ➤Turbulence
 - Vortex shedding

Fluid Elastic Instability (FEI) Most problematic

Vibration Mechanism

Tube vibrate in orbital motion

 Produced by combination of lift and drag displacements of tube at their natural frequencies

FEI and tube movement

Can lead to "Runaway"

• If energy fed to tubes exceeds that dissipated by damping

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

SCG & GC & # iRPC

IChE EF

$$V_{crit} = \beta f_n D_o \sqrt{\frac{W_o \delta_o}{\rho D_o^2}}$$

- β : FEI constant [Tube layout (30°, 45°, 60°, 90°) and pitch ratio]
- f_n: natural frequency [C_n (number of spans, end condition)]
- W_e : Effective weight per unit length
- δ_o: Log decrement as a measure of fluid damping [Tube properties, Support geometry, shell side fluid properties]

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

4th Chemical Process Safety Sharing (CPSS) SCG & GC C 19th June 2019, Thailand Process Safety Sharing

Chemica

Thermal design to avoid vibration problem

• Use the inlet/outlet supports in first few tube rows under the nozzles in order to increase tube natural frequency.

Inlet support baffles

• Design by using NTIW baffle and intermediate support baffles.

No tubes in the window - with intermediate support baffles

Thermal design to avoid vibration problem

- Increase the height under inlet/outlet nozzles (the height under inlet nozzle > 25% of Nozzle Dia.)
- Add full support at U-bend or rear head support plate for S,T type
- The U tubes should be well supported (In-bend U-bend support) and the maximum length of any bend should not exceed 80% of twice the baffle spacing (Especially, nozzle at U-bend or after U-bend). See TEMA for reference.
- Add impingement plate/rod at inlet nozzle for gases phase and two phase flow. See TEMA for reference.

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

ExxonMobil Research and Engineering Company (EMRE) has developed and patented a suite of anti-vibration technologies that can be retrofitted into existing heat exchangers or used in new applications.

New technologies:

- Dimpled Tube Supports (DTSTM)
- Saddled Tube Supports (STS[™])
- Slotted Baffle Exchanger (SBXTM)

Expect there advantages:

- Increased energy savings by reduced pressure drop in compressor cirčúit
- Improve reliability of existing exchanger by elimination of tube vibration problem
- Increased throughput at same pressure drop in existing exchanger

4th Chemical Process Safety Sharing (CPSS)

Dimpled Tube Supports (DTS[™])

- Dimples lock into tubes avoiding accidental dislodging
- Suitable for all tube layout and vertical tube bundles
- Modified DTS strip used as U-Bend stiffener

Saddled Tube Supports (STS[™])

- A locking device prevents accidental dislodging of tube support
- Suitable for 45° and 90° tube layouts only

Slotted Baffle Exchanger (SBX[™])

- Suitable for 45° and 90° tube layouts only
- One tube support has horizontally arranged slots, while the next support has vertically arranged slots

Case study

Application of DTS[™] retrofit into Treat Gas Heater

- Current Case has no vibration problems
- Future operating case with 30%
 increase in capacity predicted to have
 vibration problems
- Use of DTS allowed re-use of existing equipment while eliminating vibration potential
- A new design would have required replacement of both shell and bundle and potentially piping modifications

Feed / Effluent Heat Exchanger	TEMA BEU 33" x 126", 1" tubes 1,180 ft ² Segmented baffles		
	Design Conditions	30% Capacity Creep without DTS	30% Capacity Creep with DTS
Duty (MBtu/hr)	49.4	64.2	64.2
Δp (psi)	8.4	10.0	10.2
Vibration Problems?	NO	YES	NO

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

Thank you for your attention

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

Note : C_{MF} depends on the ratio of forcing frequency and fn and the level of damping system.

Crossflow amplitude of tube vibration

-This amplitude depends on f_n, frequency and strength of the exciting mechanism, and system damping.

- Amplitude of vibration calculation

$$X_v = X_s C_{MF}$$

Where X_v : amplitude of vibration C_{MF} : magnification factor X_s : midspan static deflection

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

SCG & GC C

Crossflow amplitude of vibration

Chemic

Crossflow amplitude of vibration

From equation

$$V_{crit} = \beta f_n D_o \sqrt{\frac{W_o \delta_o}{\rho D_o^2}}$$

To avoid FEI vibration problem at design stage

□ Tube natural frequency should be increased.

- By decreasing baffle pitch or increasing baffle thickness
- By increasing tube pitch or using 30°, 45° tube layout
- By adding support
- By using NTIW baffle
- □ The shell side velocity should be decreased.
 - By changing baffle type to double baffle
 - By changing shell type (E to J or X)
 - By increasing tube pitch
 - By increasing inlet and outlet height under nozzles.

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand 🚳 SCG 🌢 GCC 🌢 🚝 İRPC

Process Safety Sharin

From equation

$$V_{crit} = \beta f_n D_o \sqrt{\frac{W_o \delta_o}{\rho D_o^2}}$$

To avoid FEI vibration problem at design stage

□ Tube natural frequency should be increased.

- By decreasing baffle pitch or increasing baffle thickness
- By increasing tube pitch or using 30°, 45° tube layout
- By adding support
- By using NTIW baffle
- □ The shell side velocity should be decreased.
 - By changing baffle type to double baffle
 - By changing shell type (E to J or X)
 - By increasing tube pitch
 - By increasing inlet and outlet height under nozzles.

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand 🚳 SCG 🌢 GCC 🌢 🚝 İRPC

Process Safety Sharin

