2nd Chemical Process Safety Sharing (CPSS)

Points of concern for hazardous area classification

Chawarin Poyomrut Lead Engineer – Process Safety **SCG Chemicals**

^{2st} Chemical Process Safety Sharing (CPSS) 12th October 2018, Thailand

Chemical

Process Safety Sharing

Concept of hazardous area classification

Ventilation vs. Hazardous area classification

Enclose area with internal source of release

Enclose area without internal source of release but facing to hazardous area

Hazardous are for small scale operation

Concept of hazardous area classification

Concept of hazardous area classification

Hazardous Area classification shows:

- Where an explosive atmosphere may occur and disperse in air under <u>normal</u> <u>operating conditions</u>.
- Likelihood.
- Which flammable materials may cause an explosive atmosphere.

Methodology:

1) Identify point sources and associated release conditions;

- 2) Determine grade of release;
- Continuous
- Primary
- Secondary
- 3) Determine gas group or fluid category;
- I, IIA, IIB, IIC (IEC) Zone
- A, B, C, D (NEC) Division
- 4) Define temperature class;
- T1 T6

5) Establish zone classification;

- Class I Zone 0, Zone 1, Zone 2
- Class I Division 1, Class I Division 2

6) Determine hazard radii or extent;

7) Determine hazardous area, and combine the hazardous areas from different point sources.

Grade of release vs. Zone classification

API 505

Table 2—Showing the Relationship Between Grade of Release and the Presence of Flammable Mixtures

Grade of Release	Flammable Mixture Present
Continuous	1000 or more hours/year
Primary	10 < hours/ year < 1000
Secondary	less than 10 hours/year

IE 15

Table 1.2: Relationship of grade of release to zone for an open area

Grade of release	Likely to occur in normal operation	Presence of flammable atmosphere hours/ yr in open area	Zone
Continuous	Yes	Greater than 1 000	Zone 0
Primary	Yes	1 000 – 10	Zone 1
Primary	Yes	Fewer than 10	Zone 2
Secondary	No	Greater than 10	Zone 1
Secondary	No	Fewer than 10	Zone 2

Similar concept grade of release between API 505 and IE 15

Grade of release	Zone	Example source of release
Continuous	Zone 0	Continuous vent point, Inside storage tank
Primary	Zone 1	Partially vent, atm vent from Zone 1 enclosed area
Secondary	Zone 2	Flange, valve, strainer, mechanical seal, atm vent from Zone 2 enclosed area

In a congested, stagnant or enclosed area, a more stringent zone may apply.

Zone vs. Division

Material /	PI 500, NFPA 497NEC API 505, NFPA 497, IE 15EC					
Flammable liquid, Gas	Class I Div. 1	Class I Zone 0	Zone 0			
and Vapor		Class I Zone 1	Zone 1			
	Class I Div. 2		Zone 2			
Combustible dust	Class II Div. 1	Class II Zone 20	Zone 20			
NFPA 499, NFPA 654	IFPA 499, NFPA 654		Zone 21			
Class II Div. 2		Class II Zone 22	Zone 22			

Class I	Division system	Description	Zone system	Comment
Flammable liquid, Gas and Vapor	Div. 1 Hazardous under normal operation		Zone 0 Zone 1	Div.1 is split into Zone 0 and 1. Zone 0 is a small percentage of location usually confined to inside vented tanks or continuous atm vent.
	Div. 2	Not normally hazardous	Zone 2	Flange, Mechanical seal

CHEMICALS

Hazardous extent or radii

IE 15

Risk based approach

- Release Frequency Level
 - Exposure
 - Likelihood of ignition
- Release Frequency Level
- Type of equipment/ mechanical seal
 - Release hole size
- DNV Phast dispersion modelling at 70% LFL

Table C	4: Hazard	radii R ₁	and R ₂	for	pressurised	releases
---------	-----------	----------------------	--------------------	-----	-------------	----------

	Release	Hazard radius R ₁ (m)			Hazard radius R ₂ (m)				
Fluid	pressure	Rele	ease ho	le diam	eter	Rele	ease ho	le diam	eter
category	note 4 (bar(a))	1 mm	2 mm	5 mm	10 mm	1 mm	2 mm	5 mm	10 mm
	5	2	4	8	14	2	4	16	40
	10	2,5	4	9	16	2,5	4,5	20	50
A	50	2,5	5	11	20	3	5,5	20	50
	100	2,5	5	11	22	3	6	20	50
	5	2	4	8	14	2	4	14	40
D	10	2	4	9	16	2,5	4	16	40
D	50	2	4	10	19	2,5	5	17	40
	100	2	4	10	20	3	5	17	40

Hazardous area extent of IE 15 often smaller than API 505

Gas group mixture

In principle: The most hazardous substance determines the gas group of mixture.

Table B.1 Physical Properties of Selected Materials

However:

 \blacktriangleright IE 15: Mixture contains H₂ > 15 % Vol. -> group IIC > NFPA 497 Annex B: NEC group classification of a mixture

[B.1a]

$MESG_{C}(T) = \frac{1}{\sum_{i=1}^{n} \sum \frac{x_{O_{2}}^{(i)}}{MESG_{i}(T)}}$		Mol. Wt.	S (Oxygen to Fuel Molar Ratio)	MESG (mm)	NEC Group
where:			,	. ,	1
MESG(T) = Calculated maximum experimental safe gap of	Methane	16.04	2	1.12	D
mixture at temperature <i>T</i> , mm	Hydrogen	2.01	0.5	0.28	в
$MESG_i(T) = Maximum experimental safe gap of component i$	Propane	44.10	5	0.97	D
of mixture at temperature T (mm)	Nitrogen	28.01	NA	NA	NA
$x^{(i)}$ = Relative amount of oxygen necessary for stoichio-	Oxygen	32	NA	NA	NA

Οz metric reaction of component i

3.3.9 Maximum Experimental Safe Gap (MESG). The maximum clearance between two parallel metal surfaces that has been found, under specified test conditions, to prevent an explosion in a test chamber from being propagated to a secondary chamber containing the same gas or vapor at the same concentration.

Classification of liquid

API 505/ NFPA 497

- Applicable for <u>Class I Flammable liquid</u> <u>only</u>
- Not applicable for Class II and Class III Combustible liquids:
 - Low probability of an ignitable vapor-air mixture
 - Not to be considered for electrical classification purposes.

 Volatile flammable liquid: Class II combustible liquid having a vapor pressure not exceeding 276 kPa (40 psia) at 37.8°C (100°F) whose temperature is above its flash point.
When these liquids are heated above their flash point, additional vapors are generated, and the probability of ignition is increased.

IE 15 consider combustible liquid (Class II, III) classified and unclassified liquid if:

- Handling above flash point + above boiling point
- Can be leased as mist
- Handling above flash point but below boiling point and cannot be released as mist

IE 15

Table A3: Relationship between EI petroleum class and fluid category

IP Petroleum c on closed cup	lass, based <mark>(</mark> except f flash points	Fluid category			
Class	Description	Handled above flash point	Handled above boiling point	Can be released as mist	Handled below boiling point and cannot be released as mist ³
0	Liquefied petroleum gases (LPG)	Yes	Α	A	A ²
I	Flash point less than 21 °C	Yes	В	с	с
ll(1)	Flash point 21 – 55 °C	No	N/A ¹	C	N/A ¹
II(2)	Flash point 21 – 55 °C	Yes	В	С	С
III(1)	Flash point 55 – 100 °C	No	N/A ¹	С	N/A ¹
III(2)	Flash point 55 – 100 °C	Yes	В	С	С
Unclassified(1)	Flash point greater than 100 °C	No	N/A ¹	С	N/A ¹
Unclassified(2)	Flash point greater than 100 °C	Yes	В	С	С

Notes

1. Not applicable (N/A) because liquids not handled above their flash point cannot be above their boiling point.

2. Cryogenic fluids need special consideration.

3. See A1.2 for mists and sprays.

Enclosed area with internal leak source

API 505

Table F-1— Influence of Ventilation on Zone Classification

	Ventilation										
		Degree									
Grade of Release		High			Medium		Low				
				Availability							
	Good	Fair	Poor	Good	Fair	Poor	Good, Fair or Poor				
Continuous	(Zone 0 NE) Non-Hazardous ¹	(Zone 0 NE) Zone 2 ¹	(Zone 0 NE) Zone ¹	Zone 0	Zone 0 + Zone 2	Zone 0 + Zone 1	Zone 0				
Primary	(Zone 1 NE) Non-Hazardous ¹	(Zone 1 NE) Zone 2 ¹	(Zone 1 NE) Zone 2 ¹	Zone 1	Zone 1 + Zone 2	Zone 1 + Zone 2	Zone 1 or Zone 0 ³				
Secondary ²	(Zone 2 NE) Non-Hazardous ¹	(Zone 2 NE) Non-Hazardous ¹	Zone 2	Zone 2	Zone 2	Zone 2	Zone 1 and even Zone 0 ³				

¹Zone 0 NE, 1 NE or 2 NE indicates a theoretical zone that would be of negligible extent under normal conditions. ²The Zone 2 area created by a secondary grade of release may exceed that attributable to a primary or continuous grade of release; in which case, the greater dis-

tance should be taken.

³Will be Zone 0 if the ventilation is so weak and the release is such that in practice an explosive atmosphere exists virtually continuously (i.e., approaching a "no ventilation" condition).

Note: "+" signifies "surrounded by."

Zone 0", "Zone 1", and "Zone 2" are understood to be preceded by "Class 1."

High ventilation leads to reduction of Zone classification in enclosed area or semi-enclosed.

Enclosed area with internal leak source

IF 15

Grade of	Ventilation			
internal release source		Adequat	e ⁽¹⁾	Over-pressure
	Inadequate ⁽¹⁾	Zoning local to source ⁽³⁾	Zoning of remaining enclosed area ⁽³⁾	
Continuous	Avoid ⁽²⁾	Zone 0	Zone 1	Not applicable where
Primary	Avoid ⁽²⁾	Zone 1	Zone 2	there is an internal primary
Secondary	Zone 1	Zone 2	none	or continuous grade of release, but may be applicable in conjunction with adequate ventilation to maintain an enclosed area containing only secondary grade releases as Zone 2 when surrounded by a Zone 0 or 1 hazardous area.

Notes:

- Adequate ventilation means that the ventilation rate as given in section 4.3.1.1 is sufficient to apply the zone classification appropriate for that grade of release.
- Location of continuous or primary grade sources within an inadequately ventilated enclosed area should be avoided. If it is unavoidable, engineering controls such as local exhaust ventilation must be provided.
- 3. With a source of small hazard radius, e.g. a sample point, the ventilation locally can sometimes be high enough to prevent the source influencing the classification of the enclosure as a whole. The extent of the zones around sources of release should be determined taking into account the background concentration within the enclosure. As a rule of thumb (when maintaining <25 % LFL) the extent of the hazardous area given in Table C4 for an outdoor release should be multiplied be a factor of 2, unless other precise methodologies are used.</p>

IE 15 is not recommended inadequate ventilation for continuous and primary grade of release. Engineering controls (e.g. local ventilation) must be provided.

Adequate ventilation

API 505/ NFPA 497

Adequate ventilation: Air movement to achieve 25 %

- LEL
- 6 air changes/hr -> Minimum for enclosed area
- 12 air changes/hr -> Naturally ventilated enclosed areas
- Appendix A: Calculation to achieve adequate ventilation

IE 15

Adequate ventilation: Air movement to achieve 25 % LEL

Figure 4.1: Procedure for assessing type and degree of ventilation

Non-hazardous enclosed area located in outdoor hazardous area

API 505/ NFPA 497/ IEC 60079-13

Enclosed area facing hazardous zone

- Ventilation of inlet from unclassified location
- Alarm when loss of ventilation
- Air lock door with 6 ACs/hr
- Positive pressure -> 25 Pa
- Vapor tight door
- Self-closing door
- No window

Notes:

Location A	Enclosed area within hazardous area.	Classify enclosed area as per the external zone.
Location B	Enclosed area with a portion of the perimeter with openings within a hazardous area.	See four options described in 4.6.
Location C	Enclosed area with no openings within the hazardous area and the portion of the enclosed area within the hazardous area is gas tight.	Classify as non-hazardous.
Location D	Enclosed area located in a non-hazardous area.	Classify as non-hazardous.

Figure 4.4: Enclosed areas without an internal source of release located within or adjacent to classified areas

Layout vs. hazardous area

NFPA 30

△ Table 17.4.3 Location of Process Vessels with Respect to Property Lines, Public Ways, and the Nearest Important Building on the Same Property — Protection for Exposures Is Provided

	Minimum Distance (ft)								
	From Prop Includ	erty Line that I ling Opposite S	s or Can Be Bu Side of Public V	iilt upon, Way	From Nearest Side of Any Public Way or from Nearest Important Building on Same Property that Is Not an Integral art of the Process				
Vessel Maximum Operating Liquid	Stable Liquid Emergency Relief*		Unstable Liquid Emergency Relief*		Stable Liquid Emergency Relief [*]		Unstable Liquid Emergency Relief*		
Capacity (gal)	Not Over 2.5 psi	Over 2.5 psi	Not Over 2.5 psi	Over 2.5 psi	Not Over 2.5 psi	Over 2.5 psi	Not Over 2.5 psi	Over 2.5 psi	
275 or less	5	25	50	100	5	25	50	100	
276 to 750	10	25	50	100	5	25	50	100	
751 to 12,000	15	25	50	100	5	25	50	100	
12,001 to 30,000	20	30	50	100	5	25	50	100	
30,001 to 50,000	30	45	75	120	10	25	50	100	
50,001 to 100,000	50	75	125	200	15	25	50	100	
Over 100,000	80	120	200	300	25	40	65	100	

For SI units, 1 gal = 3.8 L; 1 ft = 0.3 m; 1 psi = a gauge pressure of 6.9 kPa.

Note: Double all of above distances where protection for exposures is not provided.

*Gauge pressure.

△ Table 7.3.3 Electrical Area Classifications

	NEC Class I		
Location	Division	Zone	Extent of Classified Area
Indoor equipment installed in accordance with Section 7.3 where	1	0	The entire area associated with such equipment where flammable gases or vapors are present continuously or for long periods of time
flammable vapor–air mixtures can exist under normal operation	1	1	Area within 5 ft of any edge of such equipment, extending in all directions
·	2	2	Area between 5 ft and 8 ft of any edge of such equipment, extending in all directions; also, space up to 3 ft above floor or grade level within 5 ft to 25 ft horizontally from any edge of such equipment ¹

Safety distances in NFPA 30 is alighted with NFPA 497 and API 505.

Hazardous area for small scale operation

Laboratory:

- NFPA 45: Standard on Fire Protection for Laboratories Using Chemicals
- NFPA 496: Standard for Purged and Pressurized Enclosures for Electrical Equipment

Pilot plant: IE 15:

- For pilot plant and large scale, if adequate ventilation (maintaining maximum 25%LEL) is not guaranteed it is recommended to consider Zone 2 at lowest level minimum.
- Area with non-Ex classified should not be located in the same room as Ex-classified.
- It should be possible to isolate all ignition source, raise alarm without causing an ignition risk.
- Purge box help non-Ex equipment to be operated in hazardous area

Area classification vs. Electrical classification

Zone, hazardous extent, gas group, temp class

ATEX (Ex)	II 2G Ex ib IIC T4 Gb II 2D Ex ib IIIC T135°C Db IP6X
IECEx	Ex ib IIC T4 Gb Ex ib IIIC T135°C Db IP6X

Electrical classification

NEC500Class I, Division 1, Groups A,B,C,D T4
Class II & III, Division 1, Groups E,F,G T4

Case study: Misunderstanding site condition for ventilation evaluation

Contractor document defined this area as an unclassified area due to <u>adequate</u> <u>ventilation</u> without leak source. <section-header><complex-block><complex-block>

Inadequate ventilation due to enclosed area shall be classified as Class 1 Division 1 due to leak sources at flanged connections at bottom of silo.

Case study: Misunderstanding source of release and Install new equipment near hazardous boundary

Project does not consider continuous release (Division 1) and flange leak source (Division 2).

Class I Division 1: Flammable gas exist under normal operating conditions-> Continuous vent Class I Division 2: Gases normally will be confined within or closed systems from which they can escape only in case of

accidental rupture or breakdown -> Flange

Case study: Layout vs. hazardous area

Original: No separation of hazardous area

Revise version: Separation of hazardous area by safety distance or vapor tight wall save:

- Electrical classification
- Fire proof structure
- Fire protection
- Detection system
- Handling and HSE plan

