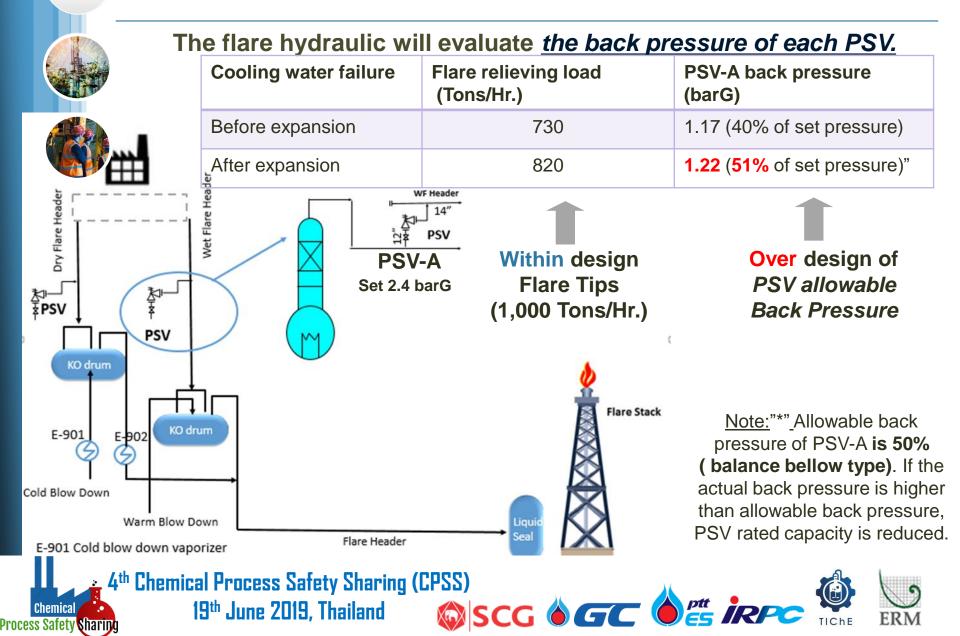
4th Chemical Process Safety Sharing (CPSS)

Chemical Che



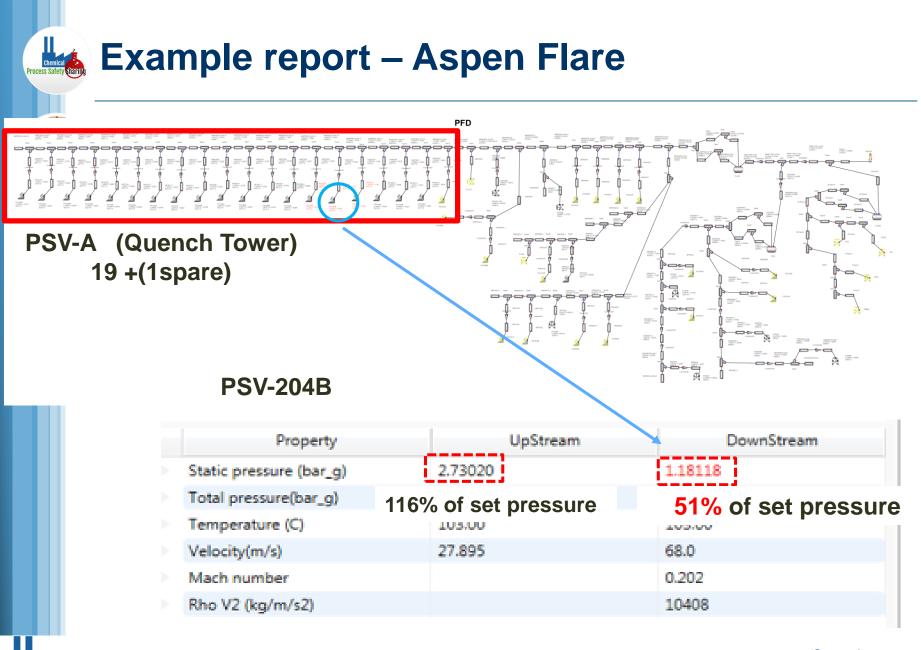
4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

Why is the flare hydraulic important?

Flare Steady State Vs Dynamic Simulation

State	Available Software	Required Input	Results
Steady	Aspen Flare System Analyzer	 Relieving condition* Case study PSV datasheet Isometric drawing 	 Back pressure of each PSV Header sizing Pressure Profile Mach Number
Dynamic	Aspen Hysys Dynamic Or Aspen Plus Dynamic	 More process detail required Process Simulation file of existing plant Logic scenario (ESD/DCS) Specify the sequence of unit start up/shut down. 	 Transient pressure profile More accurate relief load Foresight the start up/shut down procedure for minimize flare load

*Relieving condition: Relief flow, Relief temperature, Relief pressure, component (or Ave. MW)



4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand SCG & GC & C C

How to Simulate Flare Steady State

				General Scenarios M	ethods Warnings	Solver	Initialization
Pipe Editor				Properties			
Connections Dimensio	ons Fittings Heat Transfer M	ethods Summary	Select Calculation	Overall			
Routing			method	VLE method:	Compress	ible Gas	•
Length:	7.537	m		5 A 1 A 1			
Elevation change:	-6.306	m		Enthalpy method:	Ideal Gas		•
Properties			Define Relieving Scenario	Sources outlet tempe	arature estimation -		
Material:	Carbon Steel	•	(CW, EE or reflux fail)	VLE method:	Peng Robi		
Roughness:	0.15000	mm		vie method:	Peng Kobi	nson	
Thermal conductivity:	51.91	W/m-K	Built Flare System (PSV,	Enthalpy method:	Peng Robi	nson	•
Diameter			pipe header, KO drum,				
Nominal diameter:	-	•	flare)				
Schedule:	-	•					
Internal diameter:	339.750	mm		Connections Condition	ns Composition I	Methods	Inlet Piping
Wall thickness:	7.925	mm	Define Relief Conditions	Conditions			
Use class:	No	•		MAWP:	2.74586	barg	
Sizeable:	Yes	•		Contingency:	Operating	•	
				Relieving pressure:	3.18500	barg	🔲 Auto
			Validate Model	Inlet temp. spec.:	103.00	с	Actual
				Allowable backpressure	e: 1.37290	barg	🔲 Auto
				Outlet temperature:	103.00	С	
			Evaluate Results	Mass flow:	28666.0	kg/hr	
11				Rated flow:	35078.5	kg/hr	🛛 Auto
	4 th Chemical Pro	cess Safety	Sharing (CPSS)				PR-03111714
Chemical	19 th .11	ine 2019, Tha	ailand 🛛 🚳 SCG 🌢 G				EDM
Process Safety Sharii	<u>n</u> g					ChE	ERM

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

Chemical Process Safety Sharing

Chemical Process Safety **Options for Reduce PSV Back Pressure**

Options	Results
1. Increase PSV set pressure	Not possible - Limit by equipment maximum allowable working pressure (MAWP) of Tower
2. Replace pilot PSV instead of balance bellow type	Not possible - Due to service dirty fluid risk of plug (not recommend by licensor)
3. Modify the flare header	 Possible. Routing new line 30" and add 3 new PSVs and new KO drum and KO pump
4. Enhance the SIL of the flare mitigation interlock to meet SIL-3	 Possible Add redundancy of the final element (shut off valve) and sensor in safety integrity system (SIS) for reduce the failure of SIS

4th Chemical Process Safety Sharing (CPSS)

Safety Integrity System (SIS)

SIS or ESD is basically composed of a combination of sensor, logic and final element.

e.g. cooling water low low pressure to trip feed furnace and fuel.

Safety Integrity Level (SIL)

- Higher SIL that means a greater process hazard and higher level of protection required from the SIS
- Flare load mitigation require SIL-3

Safety Integrity Level Table

Safety Integrity Level (SIL)	Probability of Failure on Demand (PFD)
4	0.0001
3	0.001
2	0.01
1	0.1

Budget

Modify Flare Header

Modification list

- Add 3 new PSV
- New wet flare header 30", expand to 44" from KO drum to flare.
- New KO drum and drain pump

Concern Point

- Check the available stack slot for new header
 - Evaluate the stack support strength and loading

Time during Turn Around

Est. Cost 150 MB

Improve SIL (Interlock Cut Feed Furnace)

Existing : SIL-2 Modify to SIL-3

Modification list

- Add shut off valve for naphtha & LPG feed to furnace A,B,C = 6 XV
- Piping Modification for add XV
- Add Pressure transmitter & Temperature transmitter = 3

Time during Operate (Can Mange Furnace Shutdown)

Est. Cost 15 MB

Note: The budget is specified for magnitude estimate only. The actual budget is confidential data.

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

Key Take Away

- I. For plant expansion, the rating of knock out drum and flare tips aren't the completed approach for the flare system rating. The PSV back pressure shall be determined by flare hydraulic study.
- II. The steady state simulation are the recommend approach to evaluate the flare hydraulic.
- III. Enhance the SIL of flare mitigation system (e.g. feed furnace SIF, tower heat source SIF) is the optimum option in both cost and time.

Thank you for your attention

4th Chemical Process Safety Sharing (CPSS) 19th June 2019, Thailand

