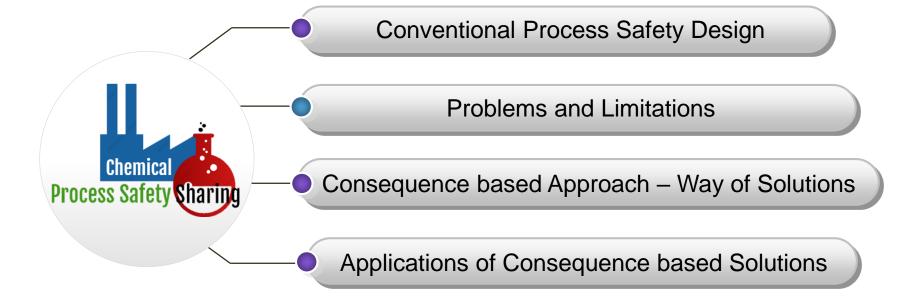


9th Chemical Process Safety Sharing (CPSS)

Consequence based Solutions for **Process Safety Engineering Design**

Vorachatra Sukwattanajaroon **Lead Engineer - Process Safety Engineering** Vorachas@scg.com, SCGC



Contents

Conventional Process Safety Design

Design on context based references in accordance with the following order of precedence;

- I. Country Laws and Regulations
- II. International Codes and Standards
- III. Company Standards
- IV. General Best Practices/Guidelines
- V. Internal/External Lessen Learns

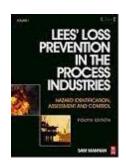
Conduct PHA study to assist the design

ราชกิจจานุเบกมา ๑๐ กันยา

๑๐ กันยายน ไดสสได

เรื่อง การป้องกันและระจับอักคีภัยในโรงงาน

H.H. lp&&le



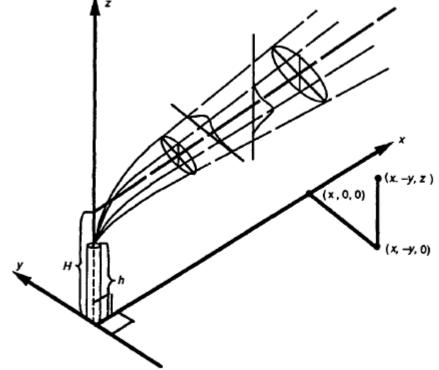
GE GAP Guidelines

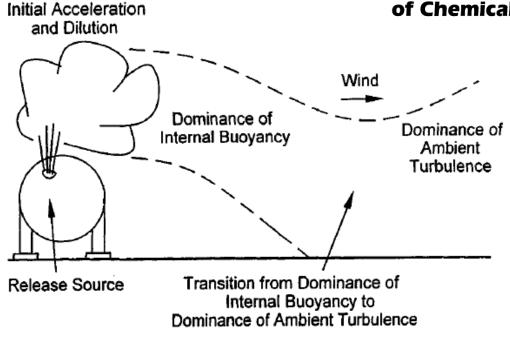
Problems and Limitations

There are pain points facing when we design under context references based;

- Unable to implement
- Over design (over budget)
- Under design (ensure safe?)
- Unclear
- Too general
- Not define/Not relate

Consequence based Approach – Way of Solutions

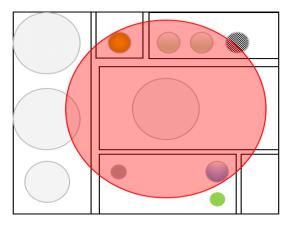


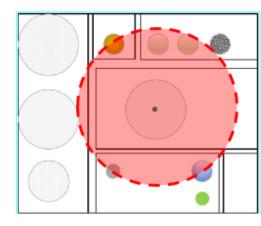


Consequence Analysis of Chemical Releases

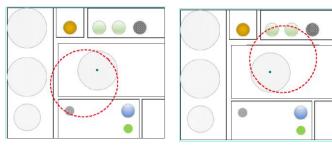
GUIDELINES FOR

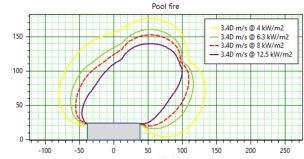
9th Chemical Process Safety Sharing (CPSS) 9th Jun. 2022, Thailand


Consequence based Approach – Benefits


Offer effective solutions and optimum safety design

e.g. Limit firefighting resource for spray cooling


1-dia of burning tank (NFPA30) needs exposure protection.


Ambient wind, radius is 91% of 1-dia burning tank

Code based

Consequence based

Standalone Pool Fire Radiation on a Plane

- → Person pain after 20 s (world bank)
- → Max heat limit for fire responder (IP19)
- → Fire escalation if long exposure & no protection (IP19)
- → Safe operating maximum for steel structure & process equipment with no protection (API2218)

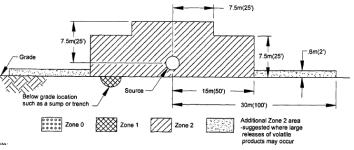
Consequence based Approach – Suggestions

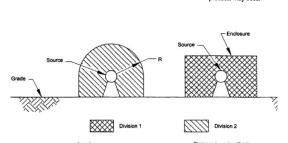
Select the right consequence modeling tool(s)

- Validated and technically proved math model for the hazard scenario studied
- Known features and appropriate use of each model for the hazard scenario
- Known limitations of those consequence modeling tool(s)

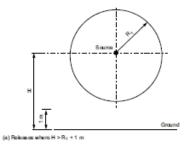
Select the reliable impact criteria source(s)

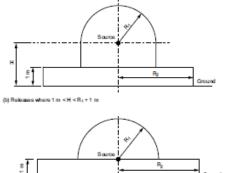
- Dispersion (flammable/toxic) impact
- Fire (Thermal) impact
- Explosion (Overpressure) impact



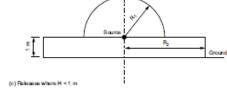


Hazardous Area Classification




Code based → API500/505, NFPA 497, IE(IP) 15

Gas 1900 kPa (275 PSIG) or less



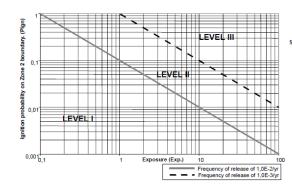


Table 5.3 Example calculation for compressors - leak hole size and hazard radius (R1)

Release frequency	Seal type	Release hole	Hazard radius R_1 (m)						
Release frequency	Sear type	diameter (mm)	G(i)	G(ii)					
LEVEL I	Floating ring	5	4	6					
LEVELI	Purged labyrinth	12	10	13					
LEVEL II	N/A	22	Ť	†					
LEVEL III	N/A	70	†	†					

N/A Not applicable since hole size is independent of seal type

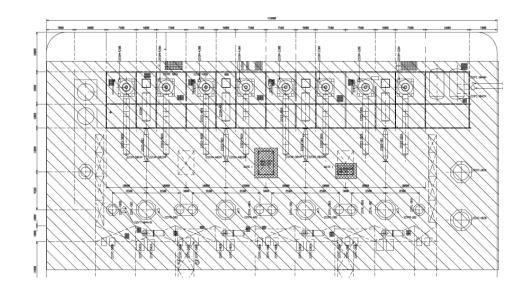
[†] These hole sizes are considered greater than should be used for hazardous area classification purposes. This Code does not therefore give hazard radii for these hole sizes. The user may determine the hazard radii by calculation.

Individual Risk (/yr) from a number of ignited secondary grade release sources is defined as:

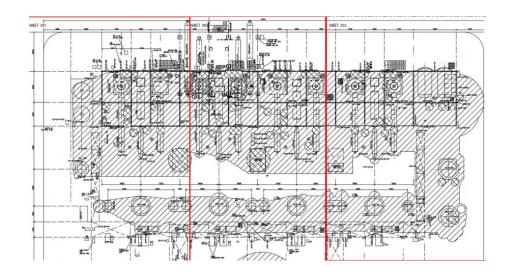
 $IR_{ignited\ release}$ (/yr) = Ffam(/release source-yr)*Pign*Pocc* V *Nrange

Point source/Risk-based

Direct example



Hazardous Area Classification



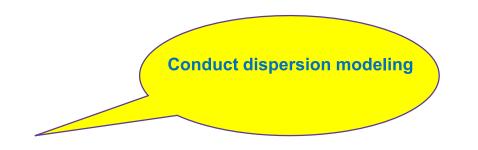
Code based → API500/505, NFPA 497, IE(IP) 15

Direct example

Scientific and lower budget !!!

Point source/Risk-based

9th Chemical Process Safety Sharing (CPSS) 9th Jun. 2022, Thailand



Hazardous Area Classification

Code based → Point source/risk based

Not applicable for chemical plants !!!

Stream component	-	I	luid catego	LFL	Molecular weight	Boiling point		
(mol %)	A	В	C	G(i)	G(ii)	(vol %)	(g/mol)	(°C)
N ₂ Nitrogen	0,00	0,00	0,00	2,00	2,00	-	28,01	-196
C ₁ Methane	0,00	4,00	0,00	88,45	10,00	5,00	16,04	-161
C ₂ Ethane	0,00	0,00	0,00	4,50	3,00	3,00	30,07	-87
C ₃ Propane	70,00	6,00	1,00	3,00	3,00	2,10	44,09	-42
C ₄ Butane	30,00	7,00	1,00	100	1,00	1,80	58,12	-1
C ₅ Pentane	0,00	9,00	2,00	1,00	0,00	1,40	72,15	36
C ₆ Hexane	0,00	11,00	3,00	0,00	0,00	1,20	86,17	69
C ₇ Heptane	0,00	16,00	3,00	0,00	0,00	1,05	100,20	98
C ₈ Octane	0,00	22,00	27,00	0,00	0,00	0,95	114,23	126
C ₉ Nonane	0,00	0,00	25,00	0,00	0,00	0,85	128,26	151
C ₁₀ Decane	0,00	25,00	38,00	0,00	0,00	0,75	142,28	173
H ₂ O Water	0,00	0,00	0,00	0,05	0,00	-	18,02	100
Carbon dioxide	0,00	0,00	0,00	0,00	1,00	-	44,01	-78
Hydrogen	0,00	0,00	0,00	0,00	80,00	4,00	2,02	-253
Average MW (g/mol)	48,30	100,06	125,03	18,74	7,03			
LFL (vol %)	2,00	1,05	0,86	4,6	4,00			
LFL (kg/m³)	0,039	0,042	0,043	0,034	0,011			

Reference may not reflect to real conditions !!!

Table C2: Physical parameters used in dispersion modelling

Parameter	Value used in EI15
Ambient temperature	30 °C ✓
Storage/process temperature	_ <mark>20 °C</mark>
Relative humidity	70 %
Wind speed	2 m/s 🗸
Stability class	D
Surface roughness length	0,03 m
Release direction	Horizontal
Release height	For R ₁ : 5 m For R ₂ : 1 m
Release angle	For R ₁ : horizontal For R ₂ : unknown
Sample time	18,75 s
Reference height	10 m
Hazard distances	To LFL

The dispersion modelling contained in EI Research Report: Dispersion modelling and calculations in support of EI Model code of safe practice – Part 15: Area classification code for installations handling flammable fluids was carried out using DNV PHAST. The results were sufficiently consistent with those in the previous edition of this Model Code² to support using DNV PHAST without modifying the standard approach to modelling these releases.

Plant layout and sitting

				/	^	\geq																	
		/	/	<u></u>	<u>/</u>	_	\geq	\geq															
/	c _j gc _i v	Se Build'	SURGO CO	Select to	/	/	/	/	\geq	\setminus													
1		A CHOCK		& Areas		, ,	/	,	/	′,	\geq	\											
50	50	/	\ 	Co [®]	ad Town	COM	,	and d			/	$\overline{}$	\										
50	50	100	50 _{(T}	Ň	Contr	ol Record	Feeder P	Sull Co.	N SEE	/	, Haders	/		\setminus									
1	I	100	100	1	/	Com		Salue S	duges Surits	Acide ret	street street	digio	/		\geq								
100	100	100	100	100	30	\vee	MOS		SURIES		street.		ard	/		>							
100	100	100	100	100	30	30	\angle	61000	1	Bee'll.	s United	Mill His	/,	BINS	/		入	\					
100	100	100	100	100	30	30	50	/	4	STBTO S			orage	/,	į.	/		〉	\				
200	100	100	100	200	50	50	100	100	/	Skopp	/	Spireto	/	Se Lau	/	WH'S	/		\rangle	\			
400	200	200	200	300	100	100	200	200	200	\angle	AMINO	/	"Le Zie,	/5	S S S S S S S S S S S S S S S S S S S	/		/		\geq	>	•	\
250	250	250	250	250	250	250	250	300	350		\angle	Prop	CONTRACT	e dies				0	/				/
350	350	350	350	350	350	350	350	350	350	·		\angle	, Q0		,			/	•	/	/	۰	•
350	350	350	350	350	350	350	350	350	350	٠	٠		\angle	Fiare	1	SIFA'	A BEEF PA	JITES .	/				/
300 (2	300	300	300	300	300	300	300	300	300	300	400	400	1	\angle	J. 68	80/	Agied P.	/		/	/	١	
200	200	200	200	200	200	200	200	200	300	250	350	350	300	50	/	¢40	E HO C	Stations					
50	50	50	50	50	200	200	200	300	300	350	350	350	300	200	1		₹ ^{¥®}	/					
50	50	50	50	50	200	200	200	300	300	350	350	350	300	200	1	- 1	/						

¹ ft = 0.305 m

GE GAP Guidelines

How to solve when unable to comply?

Table A (metric)													
TYPICAL SPACING FOR PLANT				E CO	NSEQ	UENC	ES						
Explosion and toxic concerns may req	uire greater	epaci	ng										
Horizontal Distance (m)			_				_						_
An AICHE Terdmoogy Alliance Piccal Process Safety	Text References	Boundaries	Process Unit Battery Limits						ies		noncorrbustibles, nontoxics		
Boundaries			ProFire	Ę,	_	anua			Switches) ustit		
Process Unit Battery Limits	5.7.3 6.8.1		30	Property	Emergency	ESD Valves—Manual			gigi		Corr		anks
Property	5.2.5		61	NM	E	Valve		e	Activation				age 1
Emergency						ESD	Pumps	Monitors	ESD		mattle		Stor
ESD Valves—Manual	6.8.15		15	NM]	NM	F 6	lag:	y and		l light		n-site
Fire Pumps	5.8.2		61	NM		NM	NM	Hydrents.	Water Spray	lessa	ing n	_ ا	ots,
Hydrants, Monitors	6.8.18		NM	NM	1	NM	NM	NM	Wate	Process Vessels	hand	salter	out
Water Spray and ESD Activation Switches	6.8.14		15	NM	1	NM	NM	NM	NM	ğ	Equipment handling nonflammables,	Reactors and Desalters	Knock
Process Vessels											Equip	le su	s I
Equipment handling nonflammables, noncombustibles, nontoxics	6.8.2		NA	NM]	NM	NM	NM	NM		NM	Read	Towers, Drums, Knock Out Pots, On-site Storage Tanks
Reactors and Desaiters	6.8.4		NA	61]	15	61	15	15		NM	NM] owe
Towers, Drums, Knock Out Pots, On-site Storage Tanks	6.8.3 6.8.5		NA	61]	15	61	15	15		NM	5	5
Heat Transfer Equipment													
Air cooled heat exchangers—process	6.8.7		NA	61		15	61	15	15		NM	5	5
Boilers, Air Compressors, Power Generation (Utility Area)	5.5		30	30		15	61	15	15		NM	30	30

^{/ =} no spacing requirement

Plant layout and sitting

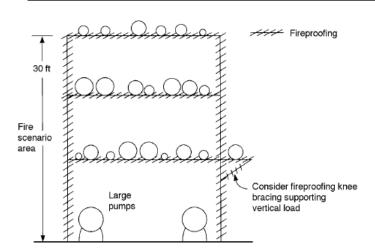
		Impact Criteria for design parameter
Topic	Unit	Description
Thermal Radiation	12.5 kW/m2	Glazed building impairment
Level impact on equipment unit	37.5 kW/m2	Complete failure of the structure or significant damage to wall or roof
	250 kW/m2	Structural steel and reinforced concrete framed building initiated failure and up to 30 minute impingement lead to total failure
	35 kW/m2	Failure on building with combustible materials j.e. wood paneling
	25 kW/m2	Failure on building with soft paneling i.e. porta cabin
Thermal Radiation	4 kW/m2	working area (personnel starting pain/injury)
Level impact on		
manned		
occupancy		
Explosion	<0.02 barg	No damage: Potential damage to window glass but
Overpressure		no structural damage
Level impact on	0.02-0.07	For glazing and lightweight structures building;
building	barg	Large windows shatter at 0.03-0.069 bar,
		At 0.069 bar corrugated asbestos
		shatters/fastenings on corrugated steel or
		aluminum panels fail,
		Minor damage to house structure at 0.048 bar

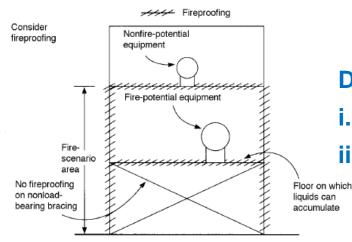
		Impact Criteria for design parameter							
Торіс	Unit	Description							
Location for non-rated (no-ex- proof) electrical equipment	100%LFL	Located away from this contour coverage plus xxx m margin.							
Location for equipment creating source of ignition (i.e. hot surface, open flame)	100%LFL	Located away from this contour coverage plus xxx m margin.							

Quantify the possible hazard impacts of facilities

Conduct dispersion, fire & explosion modeling

Fire proof design for building structure




Equipment	Protection Level ^a	Section in API 2218 or Other Reference
LPG vessels if not protected by fixed water spray systems.	Fireproofed equivalent to 1 ½ hours in UL 1709 (or functional equivalent).	API 2510 (1995) Section 8.7 Section 6.2.2
Pipe supports within 50 ft or in spill containment area of LPG vessels, whichever is greater.	Fireproofed equivalent to 1 ½ hours in UL 1709 (or functional equivalent).	Sections 6.2.2 and 6.2.3 API 2510 (1995) Section 8.8.5
Critical wiring and control systems.	15-to-30-minute protection in UL 1709 (or functional equivalent) temperature conditions.	Section 6.1.8.1 API 2510 (1995) Section 8.11

Over-design or Under-design

Conduct fire modeling

Note: a Some company standards require protection greater than that shown in column 2.

Determine

- The contour of thermal impact
- How long does the burning last?

Firewater supply duration

• NFPA 15

A.4.4.8 It is desirable to contain runoff for the anticipated duration of any fire. However, in large chemical or petrochemical facilities, a major fire can last for 8 hours or more, resulting in extremely large holding basins or retention ponds. Where the anticipated incident duration results in retention basins that are of impractical size, methods to limit the duration of runoff might be required.

When an extended duration is anticipated, a duration of 4 hours is usually considered the practical maximum. During that time, it is often possible to isolate equipment and reduce the flow rate of water and other materials so that the continuous discharge flow rate is less than the initial flow rate. If a significant amount of flammable materials can be removed from the protected area, it could be possible to shut down water spray systems and manually fight the fire, greatly reducing the amount of material that needs to be contained.

• CCPS (AIChE)

7.4.1.2. Tanks and Reservoirs

Limited capacity sources such as tanks and reservoirs can be provided as a source of water. The designs of tanks and reservoirs should be for the minimum judged necessary for fighting fire within the facility. This may be as little as a two hour supply for a relatively low risk plant, but a minimum of 4 hours is typical, based on the largest fire water demand. Within a facility, there may be certain units that require more than a four hour supply, i.e. due to a larger inventory of flammable materials. In such cases, additional sources of fire water will be required. This may mean temporary hook-up of a neighbor's system, use of cooling water, storm impoundment ponds, or reliance on municipal systems. A larger capacity may be warranted for larger and more complex facilities. Fire water pump suction tanks should be on ground level. Freeze protection should

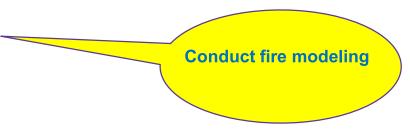
Too general?

Firewater supply duration

ประกาศกระทรวงอุตสาหกรรม

เรื่อง การป้องกันและระงับอัคดีภัยในโรงงาน

พ.ศ. ๒๕๕๒


หมวด ๔ ระบบน้ำคับเพลิง

ข้อ ๑๐ ผู้ประกอบกิจการโรงงานต้องจัดเตรียมน้ำสำหรับดับเพลิงในปริมาณที่เพียงพอ ที่จะส่งจ่ายน้ำให้กับอุปกรณ์ฉีดน้ำคับเพลิงได้<mark>อย่างต่อเนื่องเป็นเวลาไม่น้อยกว่าสามสิบนาที</mark>

Not specific !!!

API 2030

areas can be based on the potential fire exposure, the expected fire duration and drainage capacity. If process equipment cannot be isolated and de-inventoried quickly a fire can have a duration longer than the 1 to 4 hours protection that passive fireproofing can reasonably provide. Application of cooling water from spray systems (or firewater monitors or hand lines) should be given consideration in such cases since this can provide continuing protection for as long as the water supply lasts.

Assist to determine;

How long does the fire burning possibly last?

Fire/Smoke & Gas Detectors mapping study

ประกาศกระทรวงอุตสาหกรรม

เรื่อง การป้องกันและระงับอัคคีภัยในโรงงาน

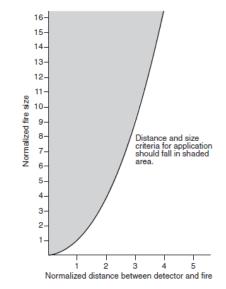
พ.ศ. โด๕๕โต

หมวด ๒

ระบบสัญญาณแจ้งเหตุเพลิงใหม้

ข้อ ๔ อาคารโรงงานต้องจัดให้มีอุปกรณ์ตรวจจับและแจ้งเหตุเพลิงให<mark>ม้ครอบคลุมทั่วทั้งอาคาร</mark> ตามความเหมาะสมกับสภาพพื้นที่ โดยเฉพาะในพื้นที่ที่ไม่มีคนงานปฏิบัติงานประจำและมีการติดตั้ง หรือใช้งานอุปกรณ์ไฟฟ้า หรือจัดเก็บวัตถุไวไฟหรือวัสดุติดไฟได้ง่ายจะต้องติดตั้งอุปกรณ์ตรวจจับและ แจ้งเหตุเพลิงใหม้อัตโนมัติ

Not define !!!


17.8.3.2 Spacing Considerations for Flame Detectors.

17.8.3.2.1* The location and spacing of detectors shall be the result of an engineering evaluation that includes the following:

- Size of the fire that is to be detected
- (2) Fuel involved
- (3) Sensitivity of the detector
- (4) Field of view of the detector
- (5) Distance between the fire and the detector
- (6) Radiant energy absorption of the atmosphere
- (7) Presence of extraneous sources of radiant emissions
- (8) Purpose of the detection system
- (9) Response time required

Conduct dispersion & fire/smoke(CFD) modeling

9th Jun. 2022, Thailand

Thank you for your attention

