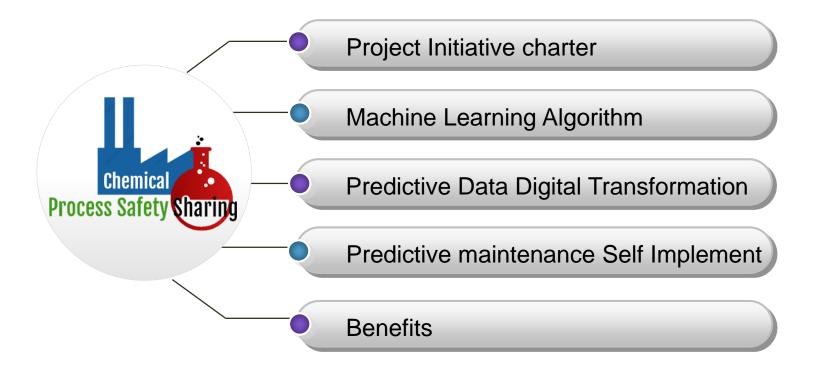


10th Chemical Process Safety Sharing (CPSS)

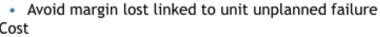
Topic: Predictive Rotating Digital Transformation

Presenter: K. Theerayut Phonrut E-mail: theerayut.p@irpc.co.th

Company: IRPC



Contents


Predictive Rotating: Project Initiative charter

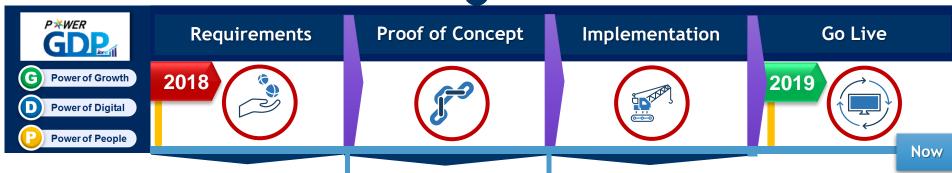
Objectives

Margin

 Limited maintenance OpEx and CapEx thanks to failure prediction and consequent minor intervention required

Equip with new advanced digital tool

data driven for better decision making


- · Reliability of monomer recovery compressor
- Vibration analysis on critical rotating machine without advanced predictive algorithm

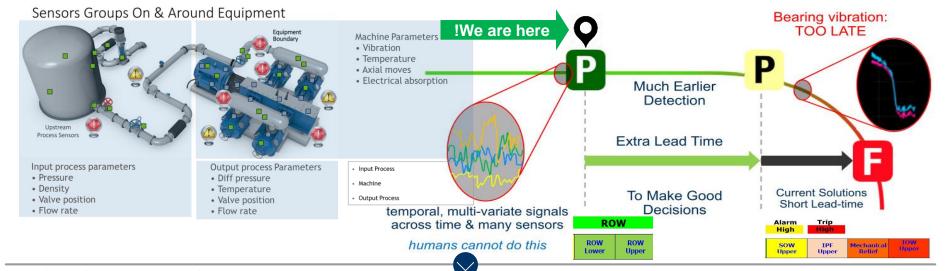
Less time spent on manual work

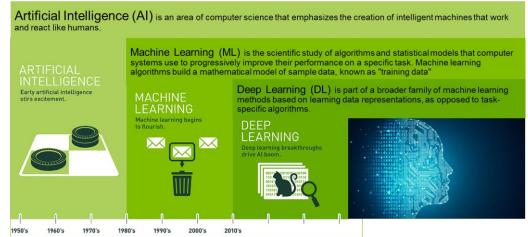
Keeping us connected

Build business & technical requirement Set scope: critical rotating machine Identify key processes impacted Evaluate solution identify vendors Tender preparation

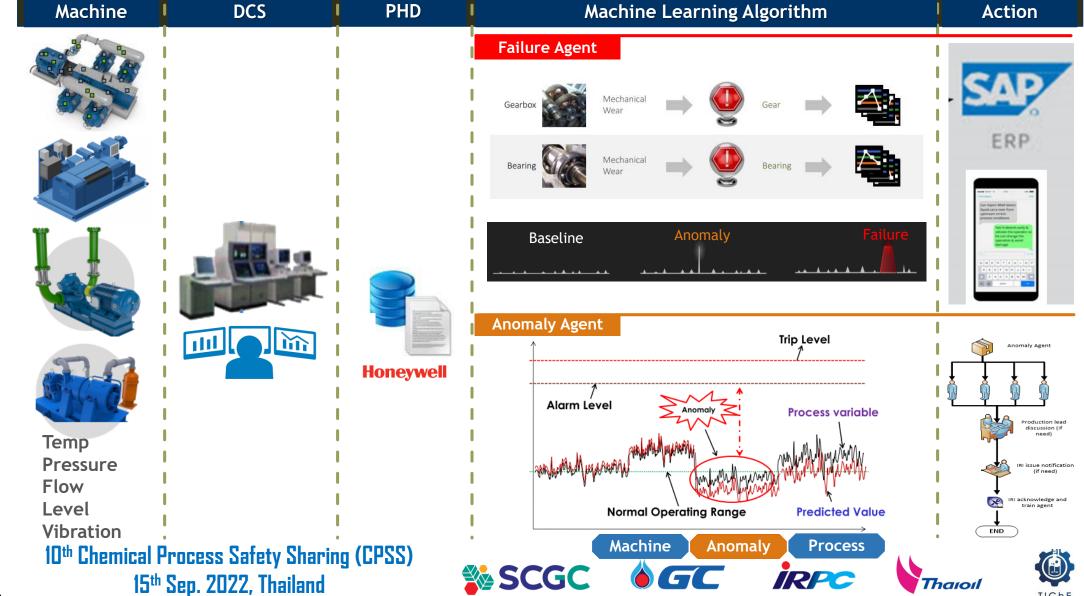
Data and failure events assessment Predictive model training and back testing Dashboard test and model fine tuning

10th Chemical Process Safety Sharing (CPSS) 15th Sep. 2022, Thailand

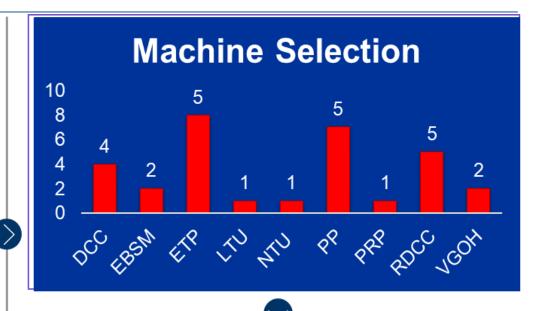



Predictive Rotating: Project Initiative charter

C1- O4 Predictive rotating machines: Overview
Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL)



Machine intelligent Prediction: Information Flow


Implementation Scope: Final 20 Equipment Roll Out 2019

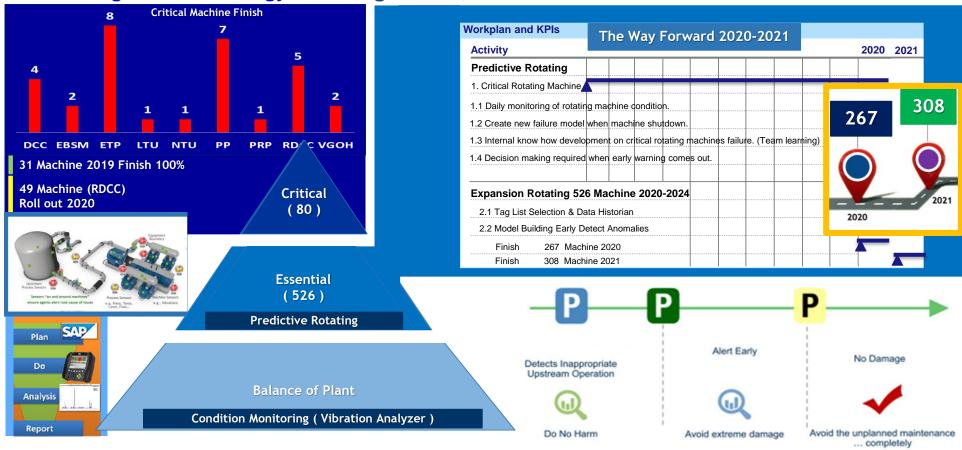
Process Safety Sharing

	ID	Plant	qui pment No	FL	Description
T/A	1	DCC	31K002	DCC -31 -31K002 -K01	Wet Gas Compressor
T/A	2	DCC	33K001	DCC -33 -33K001 -K01	Light Ends Gas Compressor
	3	DCC	34K001	DCC -34 -34K001 -K01	C3 Refrigerant Compressor
	4	DCC	34K002	DCC -34 -34K002 -K01	Heat Pump Compressor
	5	ETP	C3101	HOT -31 -C3101	Cracked Gas Compressor
	6	ETP	C4401	CLD1-44 -C4401	Ethylene Compressor
	7	ETP	C4601	CLD1-46 -C4601	Propylene Compressor
T/A	8	RDCC	53K001	RDCC-53 -53K001	Air BlowerPackage(w/MTR)
T/A	9	RDCC	53K101	RDCC-53 -53K101	Wet GasCompressor(w/TBN)
T/A	10	RDCC	58K001	ERU -58 -58K001	Light EndGasCompressor(w/MTR)
T/A	11	RDCC	58K401	ERU -58 -58K401	C2 HeatPump/Refrig.Compressor(w/
T/A	12	RDCC	58K501	ERU -58 -58K501	C3RefrigerationCompressor(w/MTR)
	13	PRP	K7401	C42P-74 -K7401 -C01	Refrigerant Compressor
	14	EBSM	03K001	EBSM-03 -03K001 -C01	OFF GAS COMPRESSOR
	15	LTU	23K001	LTU -23 -23K001	LC PROPANE COMPRESSOR
T/A	16	NTU	12K001	NTU -12 -12K001	12K001 COMPRESSOR LOCAL CONTRO
	17	VGOH	30K001A	VGOH-30 -30K001A	Make up & Recycle Gas compressor
	18	VGOH	30K001B	VGOH-30 -30K001B	Make up & Recycle Gas compressor
	19	PP	40K010	PP -40 -40K010	LC TOP COMPRESSOR
	20	PP	90RN10	PP -90 -90RN10	Agitator

High margin lost	12
T/A cycle extension	8

Machine selection concept Bad actor DEM case IRPC unplanned Shutdown high margin lost and critical machine impact T/A Cycle extension.

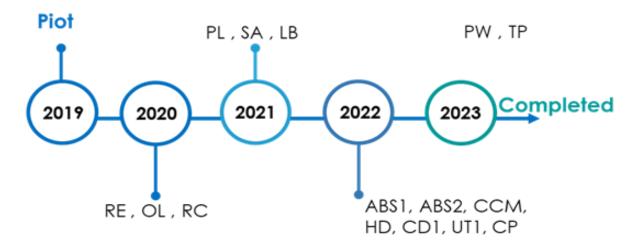
10th Chemical Process Safety Sharing (CPSS) 15th Sep. 2022, Thailand


Self Implement : 2020-2021

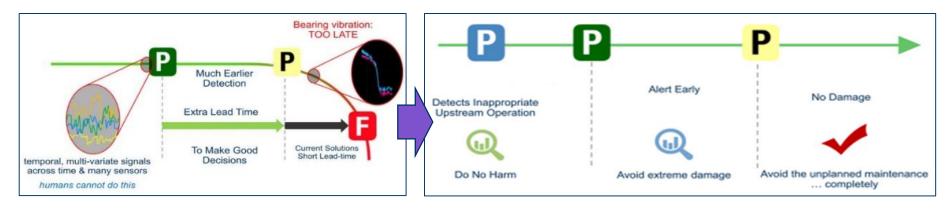
Action plan 2020 S2 Reliability and Asset Integrity @ Equipment Integrity

□ Digital & Technology: Rotating Predictive Maintenance

Successfully detected all unplanned events.



Self Implement : 2022-2023



2022 Implement Machine Learning Model 139 Eq Area ABS1, ABS2, CCM, HD, CD1, UT1, CP

2023 Implement Machine Learning Model 120 Eq Area Complex PW, TP MA Al iPredict platform

Monitoring: Wet Gas Compressor 31K002 DCC Plant

Gearbox	Motor
- m.A	
	1500 RPM
	Gearbox

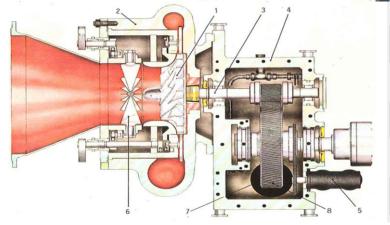
Failure and Anomaly Prediction	Live Monitorin	g Data Every 1 Hr.	
Machine Learning Agent	Latest Result	Probability Date	Alert Probability
Axial Vibration Motor - Failure Agent - [D	Normal	05/19/2022 10:23:48 AM	
Lube Oil Loss Efficiency - Failure Agent	Normal	05/19/2022 10:23:48 AM	
Process-Anomaly Agent - 31K002	Normal	05/19/2022 10:23:48 AM	T.
Motor Valve- SG: VALVE - Failure Agent	Normal	05/19/2022 10:23:48 AM	
Vibration Compressure Drive End Proble	Normal	05/19/2022 10:23:48 AM	
Vibration Bearing Compressor Non Driv	Normal	05/19/2022 10:23:48 AM	
Axial Trust Bearing Sensor Problem - An	Normal	05/19/2022 10:23:48 AM	
Bearing Compressor Vibration Problem	Normal	05/19/2022 10:23:48 AM	
Bearing Gearbox Vibration Problem	Normal	05/19/2022 10:23:48 AM	
Asset Performance	Normal	05/19/2022 10:23:48 AM	
Motor Problem - Anomaly Detector - DC	Normal	05/19/2022 10:23:48 AM	
Compressor Problem V1 - Anomaly Dete	Normal	05/19/2022 10:23:48 AM	
Lube Oil Loss of Efficiency - Anomaly De	Normal	12/04/2020 8:18:57 AM	
Gearbox Problem	Normal	05/19/2022 10:23:48 AM	
Vibration Sensor Problem - Anomaly Det	Normal	05/19/2022 10:23:48 AM	

PROJECT UNIT

WET GAS COMP DRESSOR-RAND 3MW8-6

Discharges ST1 4.36 Bar

Discharges ST2 16.7 Bar



Monitoring: Top Gas Compressor 40K010 PP Plant

Failure and Anomaly Prediction Live Monitoring Data Every 1 Hr.

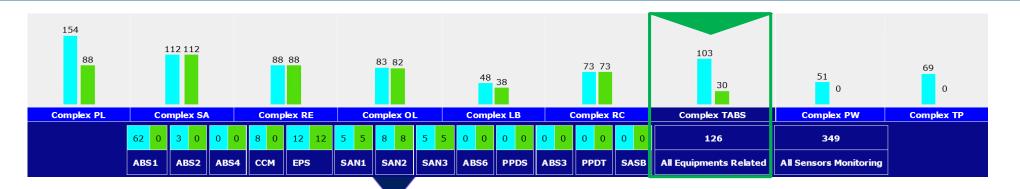
Machine Learning Agent	Latest Result	Probability Date	Alert Probability
Lube Oil Loss Efficiency - Failure Agent	Normal	05/19/2022 10:23:48 AM	
Lube Oil Gearbox and Motor Problem	Normal	05/19/2022 10:23:48 AM	
Lube Oil Temp Gearbox and Motor Probl	Normal	05/19/2022 10:23:48 AM	
40K010 - Anomaly Detector - MOTOR	Normal	05/19/2022 10:23:48 AM	
40K010 - Anomaly Detector - GB/MOTO	Normal	05/19/2022 10:23:48 AM	
Compressor Process Problem - Anomaly	Normal	05/19/2022 10:23:48 AM	
40C010 Process Problem - Anomaly Det	Normal	05/19/2022 10:23:48 AM	
40K010-SG: Winding Temp-Anomaly Ag	Normal	05/19/2022 10:23:48 AM	
40D011 Process Problem - Anomaly Det	Normal	05/19/2022 10:23:48 AM	

Top Gas Compressor

Motor 2500 kw

Gear Box

Compressor



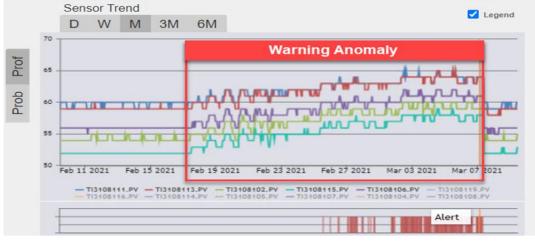
Predictive Rotating : Dashboard Status

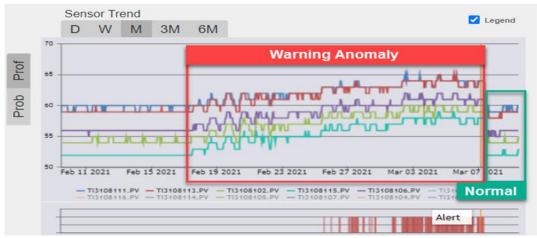
Item	Com plex	Plant	Machine	Equipm ent	Туре	Unit Opportunity Loss	Tag Mapping By	Tag View	Im port By	Tag Mapping	Excel Tem plate	Im port Dataset	Model Created	Model Type	Status
1	Complex TABS	SAN2	30P001A- P01	SAN2-30P001A- P01	VERTRICAL PUMP	Unit30	Pichet Jasrichai	<u>View</u>	<u>Pichet Jasrichai</u>	Finish	Finish	Finish	Finish	Machine- Process	Com plete
2	Complex TABS	SAN2	30P001B- P01	SAN2-30P001B- P01	VERTRICAL PUMP	Unit30	Pichet Jasrichai		<u>Pichet Jasrichai</u>	Finish	Finish	Finish	Finish	Machine- Process	Com plete
3	Com plex TABS	SAN2	30P001C- P01	SAN2-30P001C- P01	VERTRICAL PUMP	Unit30	<u>Pichet Jasrichai</u>		<u>Pichet Jasrichai</u>	Finish	Finish	Finish	Finish	Machine- Process	Com plete
4	Complex TABS	SAN2	32N201	SAN2-32N201- RN01	AGITATOR	Unit32	Theerayut Phonrut	<u>View</u>	Theerayut Phonrut	Finish	Finish	Finish	Finish	Process	Com plete
5	Com plex TABS	SAN2	35K501- C01	SAN2-35K501- C01	SCREW COMPRESSOR	Unit35	Piya Sanewong Na Ayutthay	View	<u>Piya Sanewong Na</u> <u>Ayutthay</u>	Finish	Finish	Finish	Finish	Machine- Process	Com plete
6	Com plex TABS	SAN2	37A701- A01	SAN2-37A701- A01	SCREW COMPRESSOR	Unit37		View	Som bat Bangkaew	Finish	Finish	Finish	Finish	Machine- Process	Com plete
7	Com plex TABS	SAN2	37A701- C01	SAN2-37A701- C01		Unit37			Som bat Bangkaew	Finish	Finish	Finish	Finish	Machine- Process	Com plete
8	Complex TABS	SAN2	38A801	SAN2-38A801- A01		Unit38	Som chai Vonglikit	<u>View</u>	Som chai Vonglikit	Finish	Finish	Finish	Finish	Machine- Process	Com plete

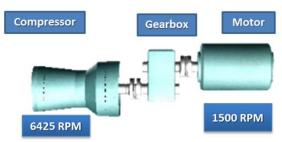
Predictive Rotating : Alert Case Report 2019-2022

Predictive Rotating Alert Dashboard			<u> </u>	58 🎏 Clo	osed 38			
1	0	3	4	0	7	0	0	0
Complex PL	Complex SA	Complex RE	Complex OL	Complex LB	Complex RC	Complex TABS	Complex PW	Complex TP

Thom	Alert Date	Diant	Machine	Alast Nama	Failure	WorkOrdor	Maintenance Cost	Bonort Bu	Alort
rtem	Alert Date	Piant	Machine	Alert Name	Mode	WorkOrder	(Baht)	Report By	Alert Status
1	4/10/2020 11:54:00 PM	SAN2	32N201	[SAN2-32N201-RN01] - Failure Agent - Fouling Problem 20 Days				Theerayut Phonrut	Closed
2	08/01/2022 3:00:00 AM	SAN2	30P001A- P01	Cooling Tower Sensor Problem - Anomaly Detector - SAN2-30C001A-C01				Pichet Jasrichai	Closed
3	15/3/2022 12:31:00 PM	SAN3	47A701A	[SAN3-47A701A-C01] - Anomaly Detector - Compressor Sensor Problem				Charnyuth Anukul	Closed




Inspection Highlight: Wet Gas Compressor



Summary

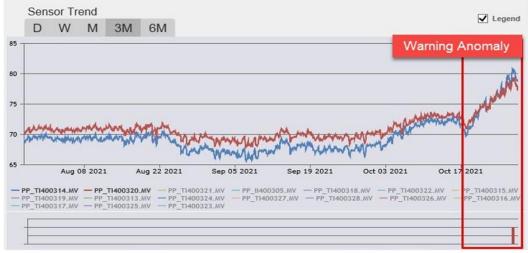
Detail: 31K002 WET GAS COMPRESSOR DRESSOR-RAND 3MW8-6

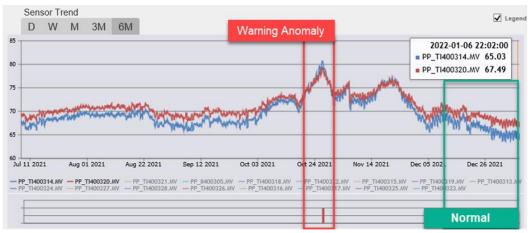
Root Cause / Possible Cause : Oil Cooler Loss of Efficiency 4 March 2021 3:02:00 PM Found temperature gearbox trend increase -TI3108111.PV GB_DRIVER_DE_BRG_MTL_TEMP_1 -TI3108113.PV GB_DRIVER_NDE_BRG_MTL_TEMP_1

Mitigation:

K. Prasopchock Wiwek Plant DCC corrective action Program Prediction Sensor Anomaly Detection alert for Back flush cooler lube oil 31K002.

Gearbox temperature trend decrease from 59°C →53°C to normal operating condition.




Inspection Highlight: Top Gas Compressor

Topic/ Content: Lube Oil Loss Efficiency - Failure Agent - PP12-40K010 **Area:** PP

Summary

Detail: 40K010TOP COMPRESSOR PP Plant Unit 40

Motor Top Gas Compressor 2500 kw 3000 RPM Unit 40 Gearbox and Compressor 10434 RPM

Root Cause / Possible Cause : Oil Cooler Loss of Efficiency 26 October 2021 1:02:00 AM Found temperature gearbox trend increase

- PP_TI400314.MV GB_DRIVEN_DE_BRG_MTL_TEMP_1
- PP_TI400320.MV GB_OIL_MTL_TEMP_2

Mitigation:

Information alert to production check plant operating condition and maintenance team for check machine condition. Inspection check oil property normal and oil temperature of oil cooler B inlet 75.2°C outlet 65.8°C

-Machine can operate in normal condition. Compressor and Gear Oil temperature trend decrease to normal operating condition.

10th Chemical Process Safety Sharing (CPSS) 15th Sep. 2022, Thailand

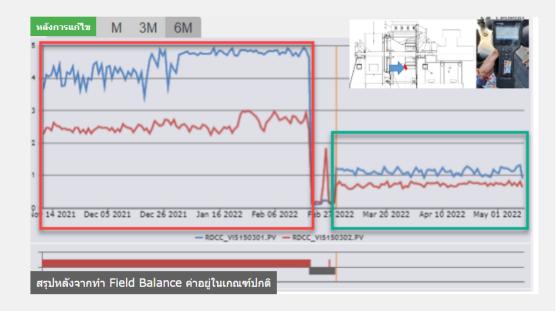
Inspection Highlight: Blower Vibration Problem

IRPC 4.0 Predictive Rotating Success Case: HSU-51K002 [HSU-51K002-K01] - Anomaly Detector - Blower Problem

Success Case #13

ผลการตรวจสอบ (Result Alert) Link

Vibration trend increase at blower


1/12/2021 5:12:00 PM Found vibration sensor RDCC_VI5150301.PV RDCC_VI5150302.PV of blower trend increase.

- RDCC_VI5150301.PV - RDCC_VI5150302.PV

วิธีการแก้ไข (Solutions) Attach File

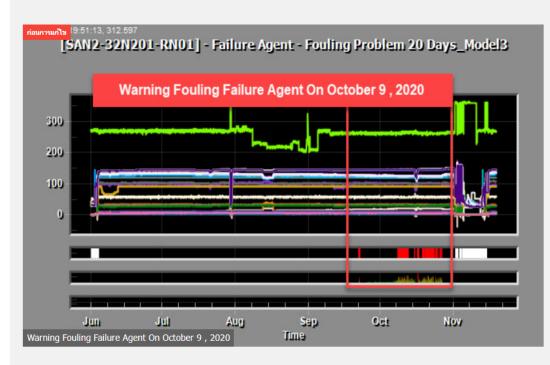
-ดำเนินการทำ Field Balance ช่วงบ่ายวันที่ 26/2/65 -โดยใส่ Weight 2 ตำแหน่ง ตำแหน่ง ใบที่ 3 =30g 65องศาและ ใบที่ 4 =85g 98 องศา -หลังจากนั้น Start up เครื่องจักรเพื่อวัดค่า Vibration หลังทำ Balance ผลพบว่าค่า Vibration ลดลงจาก 3 mm/s เหลือ 0.49 mm/s ที่ตำแหน่ง Blower Drive End และตำแหน่ง Blower None Drive End ลดลงจาก 1.9 mm/s เหลือเพียง 0.3 mm/s -สรุปค่าอยู่ในเกณฑ์ปกติ

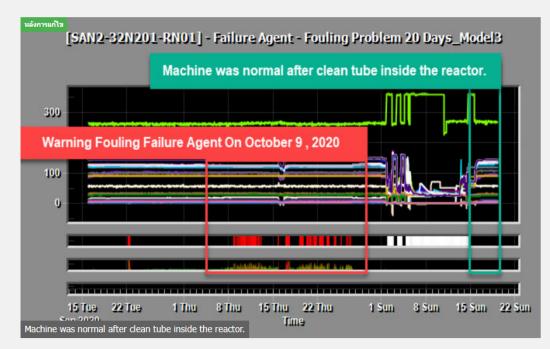
Process Safety Sharing

Approve By - Theerayut Phonrut 11/05/2022

Item 13

Inspection Highlight: Reactor Warning Fouling Problem


Success Case #1


ผลการตรวจสอบ (Result Alert) Link

4/10/2020 11:54:00 PM Model Process Fouling สร้างขึ้นระมภับ K.Wiroj Namhom โดยการ Forecast shutdown SAN2 @ Temp.diff Reactor 25 C ด้วย Model Machine Learning ซึ่งใช้ Dataset Failure On September 29 ,2019

วิธีการแก้ใข (Solutions) Attach File

ข้อมูลจาก K.Wiroj Namhom Model forecast วันที่ 29/10/2020 Temp. diff Reactor จะขึ้นไปอยู่ที่ 25 C ขอให้เครียม plan shutdown clean fouling ซึ่งหลังจากที่ SAN2 Shutdown เพื่อ Clean Tube Reactor หลังจาก Startup plant Temp.diff Reactor SAN1_2_TDR320101.PV trend ลดลงปกติ

Issue By - Theerayut Phonrut

Approve By - Numpol Choonhapan 23/11/2020

Item 1

Benefit

Loss from Equipment

	Description		2015		2016		20	017	2018	
Equipment			SD day	CM Loss						
34K001	C3 Refrigerant Compressor	DCC	0.96	8.05						
34K002	Heat Pump Compressor	DCC	0.01	4.9						
C3101	Cracked Gas Compressor	ETP	4.27	40.6	0		0.19	3.45	0.32	5.35
C4601	Propylene Compressor	ETP	0		0		1.92	38	0.85	6.25
53K101	Wet GasCompressor(w/TBN)	RDCC	0		0		0		0.47	28.3
03K001	OFF GAS COMPRESSOR	EBSM	0		1.9	9.8	0		0	
30K001A	Make up & Recycle Gas compressor	VGOH	0		0.3	2.45	0		0	
30K001B	Make up & Recycle Gas compressor	VGOH	0		0.9	3.15	0		0	
90RN10	Agitator	PP	0		0.5	4.9	0		1.04	3.64
			5.24	53.55	3.6	20.3	2.11	41.45	2.68	43.54
	Average/year		10.2195		5.63889		19.6445		16.2463	

51.7492 M Baht 4 Year 12.9373 M Baht Per Year 0.40429 M US\$

OPS-O4: Predictive Rotating Prevention Critical Machine Unplanned Shutdown

Benefit 12 MB Per Year

Predictive Rotating: Digital Transformation

Learn Normal baseline and Build Anomaly Agent

Live Anomaly Failure Agent

Auto Adapt Implement

RESULT-ORIENTED

PROMISE AND DELIVER

CONTINUOUS IMPROVEMENT

DO THINGS TOGETHER

NO BIAS

CTIVELY SOLVE THE PROBLEM

