

# TNChE ASIA 2023 Sustainable Olefin Technology Solutions

Dr. Franz Dalitz Pattaya, Thailand, June 22<sup>nd</sup>, 2023

Making our world more productive





## Sustainable steam cracker design Roadmap to net zero CO<sub>2</sub> emissions





#### Linde Roadmap to net zero CO<sub>2</sub> Emissions in Steam Cracking – Stepwise Approach



#### Linde Sustainable Olefin Technologies: The carbon management toolbox.





#### Linde Sustainable Olefin Technologies: The carbon management toolbox.





# Flue Gas CO<sub>2</sub> Capture Typical process concept







**Process: BASF® OASE Blue Solvent** 

#### **BASF® OASE Blue Characteristics:**

- $\checkmark$  Suitable for flue gases with low CO<sub>2</sub> concentration
  - 0<sub>2</sub> (4 16 v%) / CO<sub>2</sub> (4 25 v%)
- ✓ **Demonstrated technology** since 2009,
  - ${\sim}100.000$  hours of operation
- ✓  $CO_2$  removal rate ≥ 95%
- Very high stability of solvent resulting in low make-up rates
- Patented emissions reduction system and Nitrosamines management
- ✓ Minimum 20% reduction of regeneration energy against conventional amine
- ! High steam consumer

# Flue Gas CO<sub>2</sub> Capture Required modifications ISBL cracker

- Flue gas ducting
  - Design and procure the required modifications
  - ✓ Implementation in regular plant turnaround
- Impact steam system, energy- and utility integration
  - ✓ Find the right solutions for (re)balancing
  - ✓ Offers opportunities in combination with compressor drive electrification
- System dynamics
  - Define sound control strategies to ensure continued stable and reliable plant operation also in upset scenarios



# Relevance on Energy-integrated Systems Liquid cracker, >1000 kta ethylene and >500 kta propylene.





Typical boundary constraints

- World-scale liquid cracker, >1000 kta ethylene
- Methane-rich firing in furnaces (and auxiliary boilers)
- $CO_2$  concentration ~7-9 mol% (wet flue gas)
- Total CO<sub>2</sub> quantities of 150-200 t/h

#### Resulting selected design features

- Large single train design, absorber diameter 12-14 m
- Thermal energy demand ~2.5 GJ/ton of  $CO_2$
- Cooling by air or cooling water
- Make-up below 0.4 kg amine / ton of  $CO_2$
- Approx. plot ~5000 m<sup>2</sup> (in proximity of emitters)



# Relevance on Energy-integrated Systems

Addition of flue gas carbon capture plus CO<sub>2</sub> compression (35 bar)







# **Relevance on Energy-integrated Systems** Unintegrated heat supply to flue gas CO<sub>2</sub> capture







# **Relevance on Energy-integrated Systems** LP steam for CO<sub>2</sub> capture from cracker, CO2-C electrified







## **Relevance on Energy-integrated Systems** LP steam for CO<sub>2</sub> capture from cracker, CO2-C & C3C electrified







# Flue Gas CO<sub>2</sub> Capture Summary

- Amine-based systems are the most mature technology for flue gas CO<sub>2</sub> capture, reaching CO<sub>2</sub> removal rates ≥ 95%
- The close development partnership between BASF and Linde ensures flawless project execution and process integration within cracker sites or overall industry complexes
- Operating companies benefit from a licensor having experience with the full chain from flue gas ducting, CO<sub>2</sub> removal & liquefaction and storage
- Energy integration opportunities of CO<sub>2</sub> capture and petrochemical units may drastically impact the business case
- Does your capital fired equipment generate a flue gas with "decently high" CO<sub>2</sub> concentration?
- Is your petrochemical site characterized by a surplus of low-temperature heat and/or large amounts of vacuum steam generation?

 $\rightarrow$  flue gas carbon capture may be a promising solution







#### Linde Sustainable Olefin Technologies: The carbon management toolbox.





#### Linde Sustainable Olefin Technologies: The carbon management toolbox.





# Hydrogen Fuel Switching Technology selection based on boundary constraints







#### A fully integrated solution considers

- Total Cost of Ownership (TCO) optimisation, considering CAPEX, OPEX, availability and maintenance
- Highest reliability, integrating operational experiences
- Granting wrap-around guarantees & warranties

## **Hydrogen Fuel Switching** Technology example 1: $H_2/CH_4$ separation (for ethane cracker) and selection criteria

"Bolt-on" design



- $H_2$  yield up to 90% (PSA) or 98% (PSA / HISELECT<sup>®</sup>)
- Can be added later as "add-on"
- Can be centralized for more than one tail gases

#### Integrated design



- $H_2$  yield up to 99%
- More compact and CAPEX/OPEX optimized design





# Hydrogen Fuel Switching Technology example 2: Reforming step and selection criteria



TIChE

# **Hydrogen Fuel Switching** Technology example 3: CO<sub>2</sub> removal from syngas and selection criteria

Formunity of Practice



**Conventional Amine** 



- Conventional technology
- Multiple amines available
- Requires thermal energy
- Less electrical power requirement

# → Suited for low thermal energy cost scenarios and/or where steam export is unappreciated

## Adsorption-based HISORP<sup>®</sup> CC



- Entire H<sub>2</sub> plant avoids solvents
- Leverages on low-carbon electrical power
- No steam consumption; higher steam export
- Highly modular, supply as packaged units

# → Suited for low electrical energy cost scenarios and/or where steam export is appreciated

# Dow selects Linde as partner for supply of clean $H_2$ and $N_2$ for its proposed net-zero carbon emissions site in CAN





MIDLAND, Mich., April 25, 2023 /PRNewswire/ -- Dow (NYSE: DOW) announced today it has selected Linde (NYSE: LIN) as its industrial gas partner for the supply of clean hydrogen and nitrogen for its proposed net-zero carbon emissions1 integrated ethylene cracker and derivatives site in Fort Saskatchewan, Alberta, Canada. Final investment decisions for both the Dow and Linde projects are subject to approval by both companies' respective Board of Directors and various regulatory agencies. Final investment decisions are expected in fourth quarter this year for a potential startup of phase 1 in 2027.



•

Under the parties' framework agreement, Linde will complete the design and engineering for a Linde-owned and operated worldscale air separation and autothermal reformer complex. This complex would be integrated with Linde's existing operations in Fort Saskatchewan.

"Linde's partnership is critical in enabling Dow to advance its plans to decarbonize our Fort Saskatchewan site while growing our business," said Edward Stones, Dow's business vice president, Energy and Climate. "Our customers are looking to Dow to help

lower the carbon footprint of their products, and this is an important step in that direction."

- Dow's proposed Fort Saskatchewan Path<sub>2</sub>Zero expansion project will create the world's first net-zero carbon emissions integrated ethylene cracker and derivatives site with respect to scope 1 and 2 carbon dioxide emissions.
- Decarbonize approximately 20 percent of Dow's global ethylene capacity
- Produce and supply approximately 3.2 million metric tonnes of certified low- to zero-carbon emissions polyethylene and ethylene derivatives



CO<sub>2</sub> infrastructure

# **Decarbonizing World-scale Petrochemical Sites** Summary

- Solutions for flue gas CO<sub>2</sub> capture ("post-combustion") and blue hydrogen fuel switching ("pre-combustion") are commercially ready
- For each solution, reduction of direct CO<sub>2</sub> emissions of
  95% can be achieved
- Solutions can significantly vary, depending on site- and client-specific as well as economic constraints
  - A multi-criteria decision process is required to identify the most promising solution(s)
  - Selection of suitable technology elements and integration of petrochemical and H<sub>2</sub>/CO<sub>2</sub> processing facilities play a vital role





Volume & Concentration Carbon Capture % Emitter Distribution & Restricted Access Existing vs. new assets Economy of Scale Capital Allocation Impact on & suitability to existing assets Reliability & Flexibility aspects





# Thank you for your attention

Cinde

Making our world more productive