
Dr. Suchat Pongchaiphol

Tentative Program for TNChE Asia 2023 Conference 2# Process Scale-up Sharing

https://www.bangkokpost.com/business/2179811/reimagining-thailand-with-a-bcg-economy

JGSEE, KMUTT

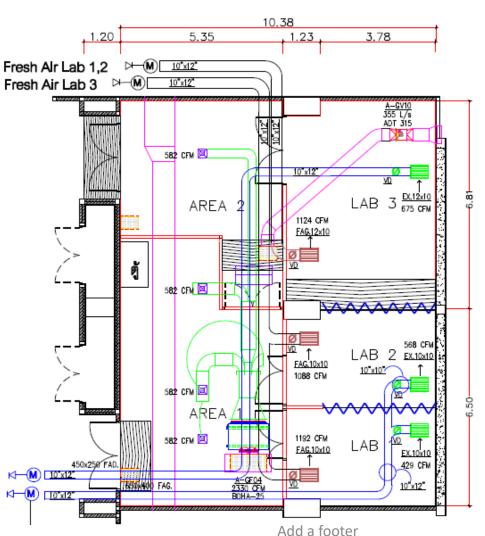
IBBG, BIOTEC

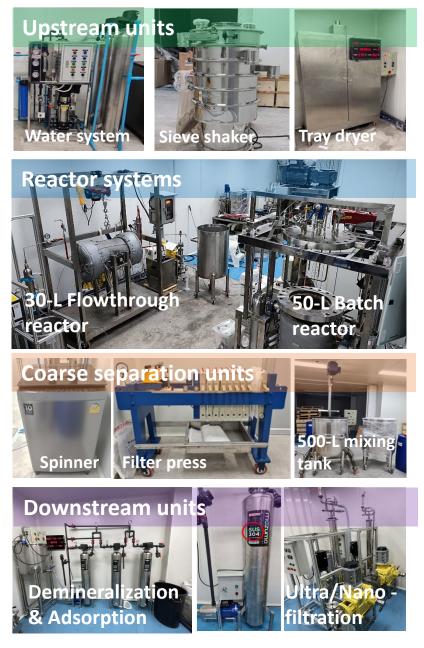
Prof. Dr. Navadol Laosiripojana

Assist.Prof.Dr. Marisa Raita

Dr.Verawat Champreda

Dr. Chayanon


Dr. Chayanon Chotirotsukon


Contact Person Prof. Dr. Navadol Laosiripojana Email: <u>navadol.lao@kmutt.ac.th</u> Assist.Prof.Dr. Marisa Raita Email: <u>marisa.rai@biotec.or.th</u> Tel 0853639161

IBL Pre-pilot facilities for biomass fractionation

6/27/2023

Mr. Suchat Pongchaiphol, Senior Research Engineer (Doctor degree, experience 10 yrs ++)

- Fixed & Fluidized Bed Resin in Ion Exchange Unit
- Highly Turbulent Circulating Flow by Fixed Bed Reactor & Berty Reactor
- Catalyst Polymerization Production by 50L Reactor Size
- Hydrogen Gas Blending Unit for welding unit system
- Dust Cyclone Separator (Size separation)
- Scale-up Steam Explosion reactor from 1 liter to 10 liters
- Scale-up and design system from batch reactor to continuous reactor in the biomass supercritical water gasification continuous flow process
- Carbon Nanotube Production from Fixed Bed, Downer and Fluidized Reactor
- Waste Gas and Water Effluent Treatment by Photo catalytic Reactor
- Scale-up and design system from Batch to Continuous Reactor for Carbonization Process
- Design Rotary Fluidized bed Reactor unit for polymerization process
- Furfural synthesis vis Pervaporation process
- Aluminum recycle process potential and technology benchmark
- Pyrolysis oil process from plastic waste and technology benchmark
- Titanium dioxide production process from catalyst waste and technology benchmark"

EXPERIENCE PROJECT WITH Integrative Biorefinery Laboratory, IBL (2016-present)

- Lignin production process from residue biomass and technology benchmark
- Design Food Waste Composter unit
- 5L High pressure reactor unit for hydrothermal reaction
- 30L High pressure extractor unit and solvent recycle unit
- 50L High pressure Reactor unit and Overall downstream unit
- 10 and 40L High pressure Fermenter unit and automation controller unit
- Modified 18 L Catalyst Synthesis Reactor for polymerization process
- Design and Fabricate Fixed Bed Reactor for Steam Reforming Unit
- Cellulose Pulping Production Process (Alternative Technology)
- Furfural Production Process by Reactive Distillation (ว୩)
- Alternative sugar conversion by Photocatalyst Reactor
- Alternative sugar purification by Absorption, Membrane and Falling film Evaporation Unit
- Wax Extraction Process and Purification process for policosanol product
- Glycerol Hydrogenation from Batch to fixed bed reactor
- Modified Electric Controller of 1L High pressure Parr reactor unit
- Modified Membrane Reactor Unit in Humidifier and Impurity Generation Mode

BCG is multi/inter/trans disciplinary by nature

Bio Economy เศรษฐกิจชีวภาพ

Green Economy

เศรษฐกิจสีเขียว

Circular Economy

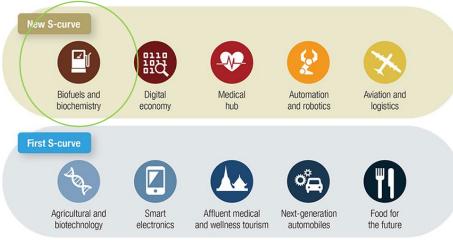
เศรษฐกิจหมุนเวียน

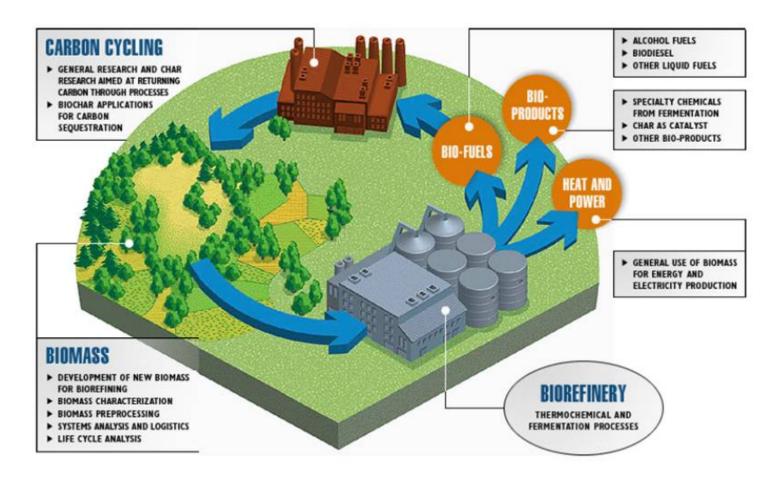
https://www.youtube.com/watch?v=hwuUK-b6TLY

Biorefinery: New S-curve industry for Thailand

BIOrefinery is becoming a key

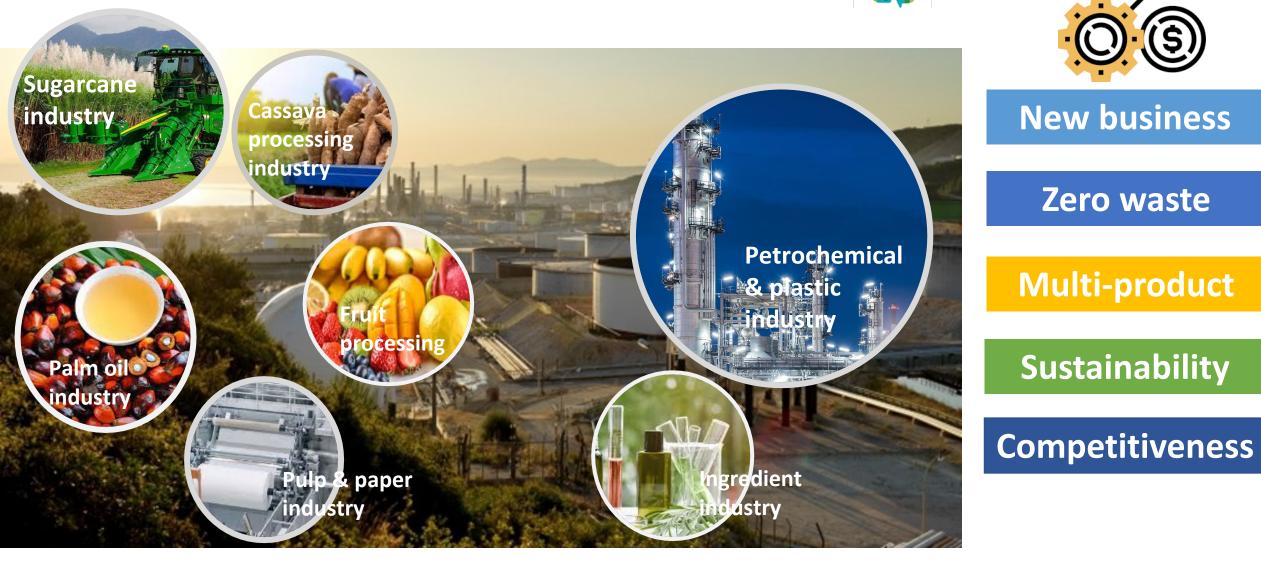
new driver for **BCG ECONOMY** platform in Thailand.



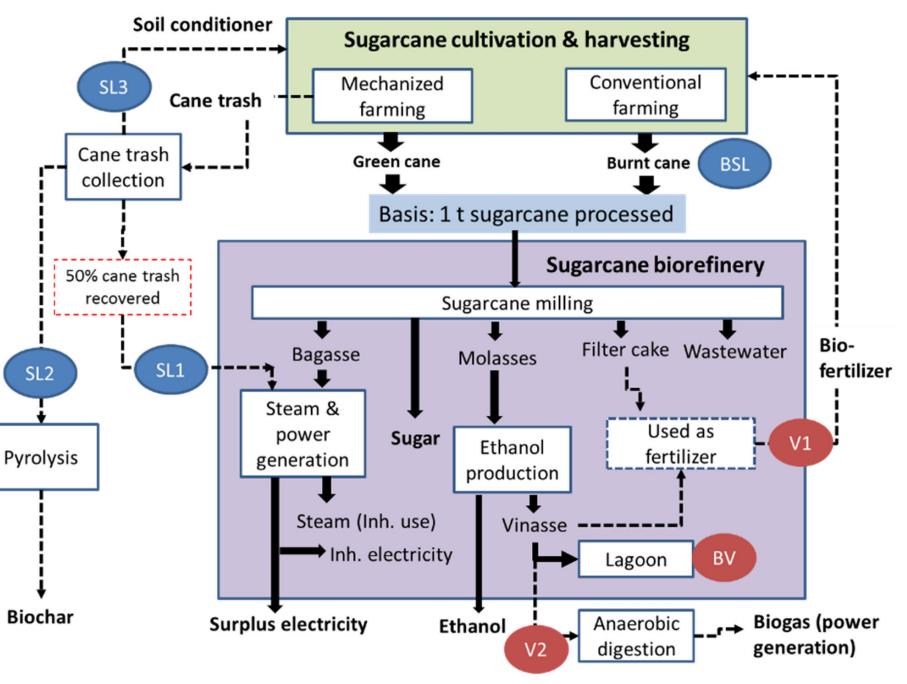

l-⊞

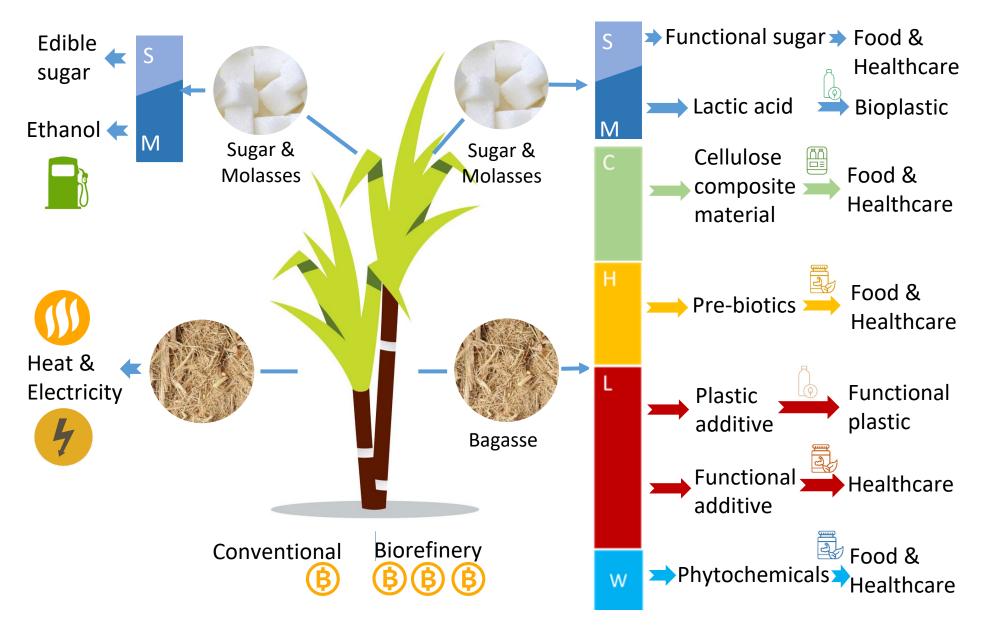
Diverse agricultural products/ by-products

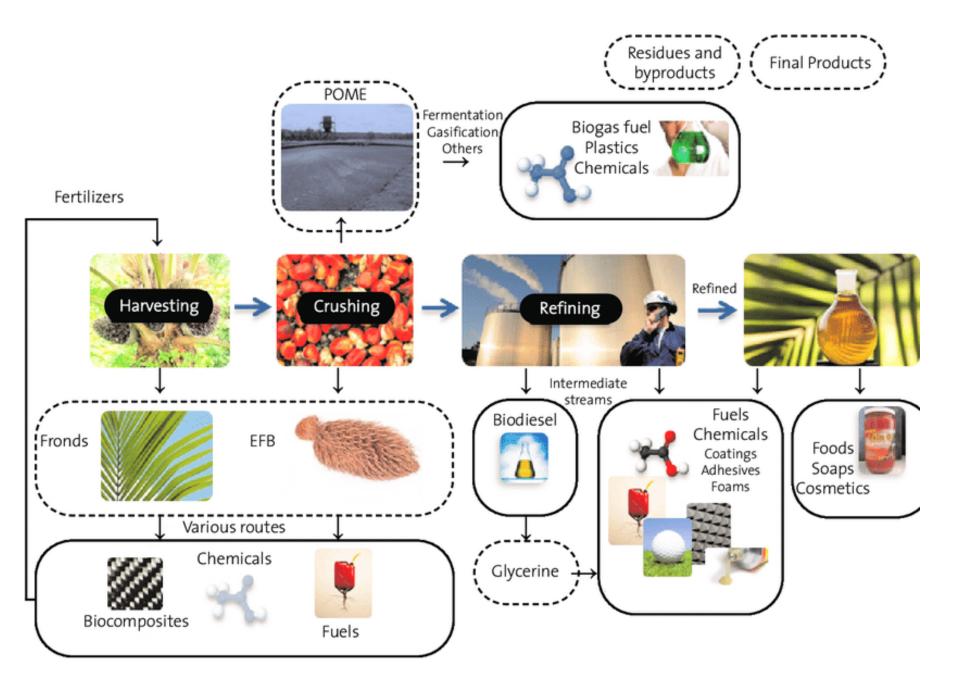
Existing industry platform


New S-curve Thailand 4.0

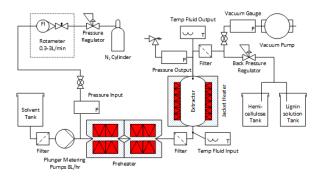
https://www.intechopen.com/chapters/48650


Transformation of current industries to biorefineries

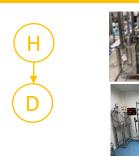

Sugarcane processing


https://www.mdpi.com/1996-1073/15/24/9515

Sugarcane biorefinery model


Palm oil biorefinery

Example Research Scale up: Biorefinery of sugarcane to bio-based products



Eco-pulp food container [RGF2020]/ TRL6

Xylooligosaccharide (XOS)/ TRL6*

Detoxification Purification Concentrati

Downstream process prototype Detoxification unit (resin) Purification unit (membrane) Concentration unit (falling film)

Eco-pulp process (TRL6) 1,000 product prototypes

Physical performance test

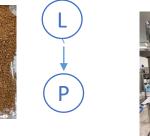
Trade secret application

Up-scaling plan on progress

Heavy metal test Microbial test

Biodegradation test

 \checkmark

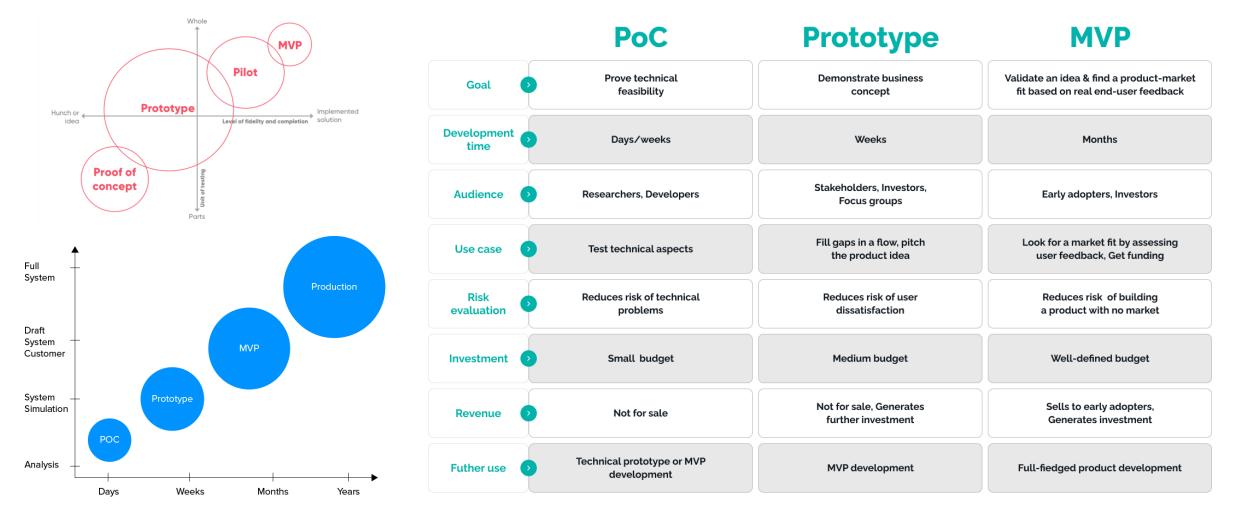

Ø

 \checkmark

 \checkmark

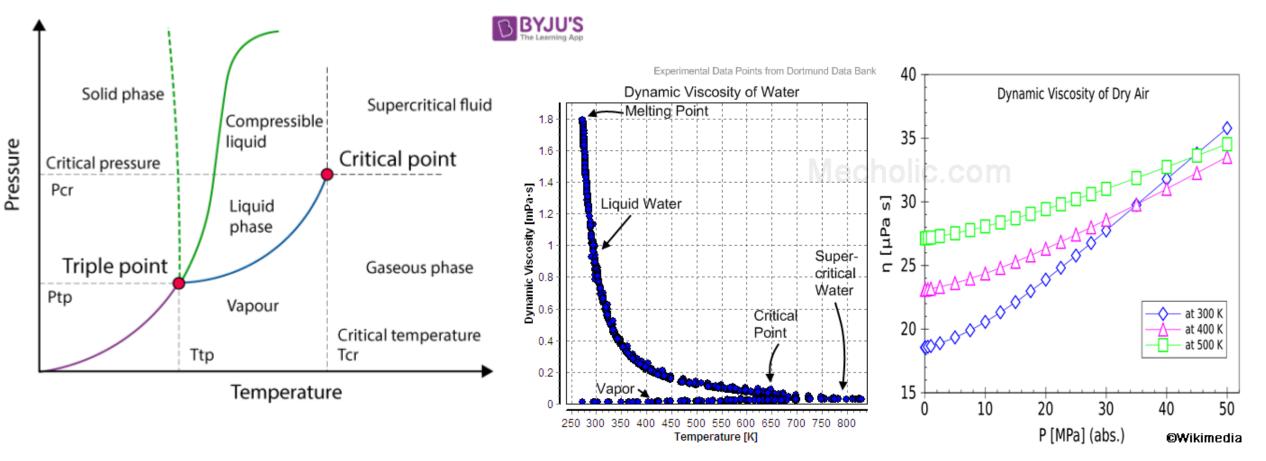
Target XOS > 90%
Product testing

Organosolv Lignin fine chemicals/ TRL6*

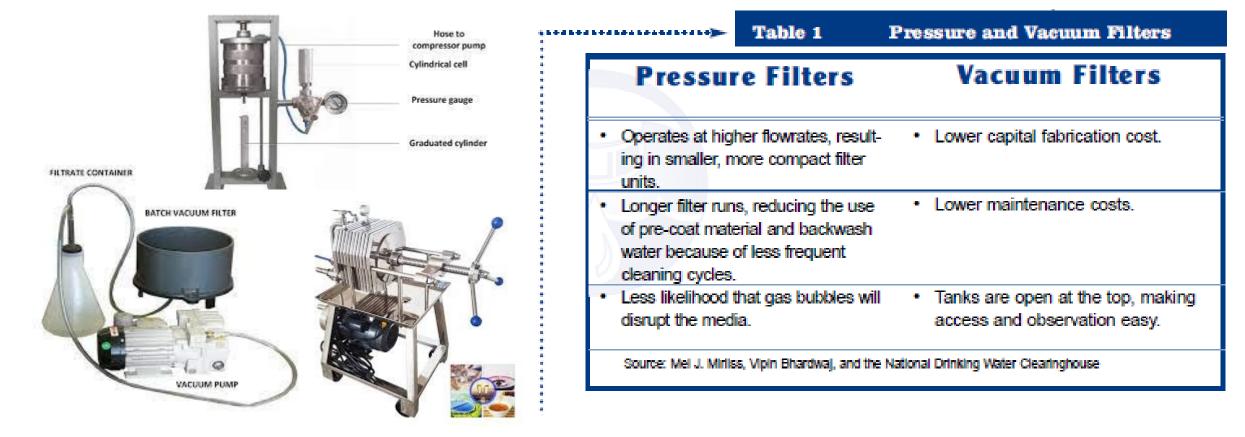


Lignin powder Oven drying process Powder Packaging unit Yield >60% Purity>95% Mw 1800-3000 GPC/FTIR/NMR

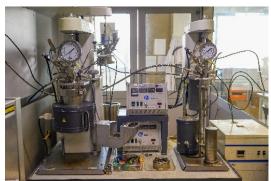
Example Research Scale up: Pre-pilot organosolv lignin prototype and application



Difference Proof of Concept, Prototype, minimum viable product (MVP)



Proof of Concept Parameter to Scaling Up


Temperature vs Pressure

Proof of Concept Equipment to Scaling Up Vacuum Filter vs Pressure Filter

Step in the scale up process

Product Economics based on market size and selling price compare with Production Cost

Laboratory Study and Scaleup Planning Time at the Same time. For Fine key of rate controlling step in the production process

Educate Other Parameter in Larger Size by use possible equipment in commercial scale

Design and Test in Pilot Scale for uncertainly process, environment, waste management and other effect from production

Evaluate Pilot Plant Result (Product & Process) Including Process Economic. Make Decision on whether or not to proceed with full scale commercial Plant

Product Development Process In 6 Steps

	Strategic	Alignment Funding	Release	MVP	Release V 1.0 Release
1. Ideation	2. Product Definition	3. Prototyping	4. Detailed Design	5. Validation/ Testing	6. Commercialization
Explore idea generation Fill out narrative, exploring ideas Create presentation for steering committee	Product discovery starts Define core functionality Understand market size and revenue	Create prototype Create MVP Market research Update business plan	Refinement of prototype Detailed product design Confirmation of Business plan and GTM plan	Ensuring the prototype works as planned Validating the product in the eyes of the customers Testing the viability of the financials	Feature Complete Begin GTM Execution Customer Success Involvement Product Launched
Exit Criteria: Venture Board approval to proceed to Discovery Phase	Exit Criteria: Created business case	Exit Criteria: Confirmation of Business case and Go to Market plan	Exit Criteria: Design complete	Exit Criteria: Product Quality Demonstrated Initial Customer Acceptance	Exit Criteria: Generating revenue
DISCOVERY	Milestone Estimates	Revenue Estimates	Business Plan Estimates		

Product development

17

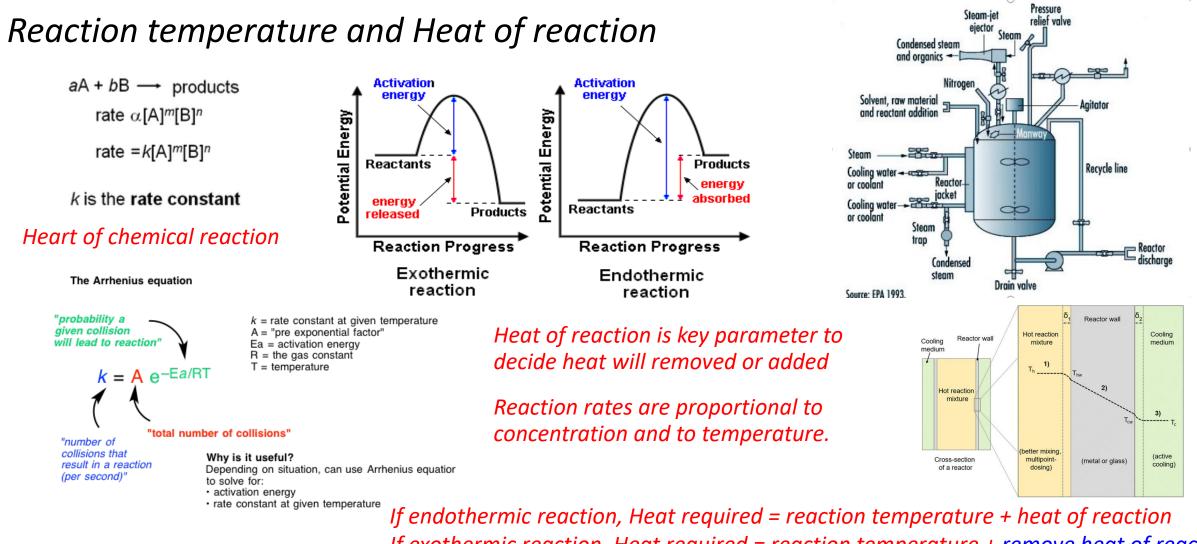
6/27/2023

Industrial Instrument

- 1. Temperature
- 2. Pressure
- 3. Flow
- 4. Level
- 5. Torque & Motor
- 6. Etc.

Industrial Equipment

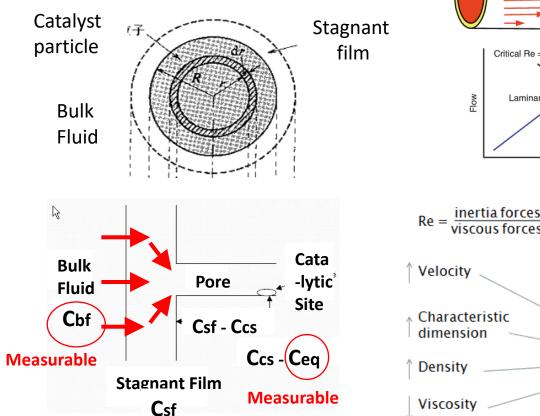
- 1. Reactor
- 2. Mixer
- 3. Separation
- 4. Dryer

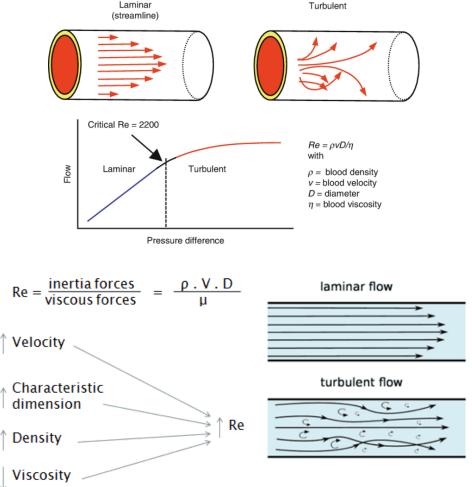


Lab Equipment

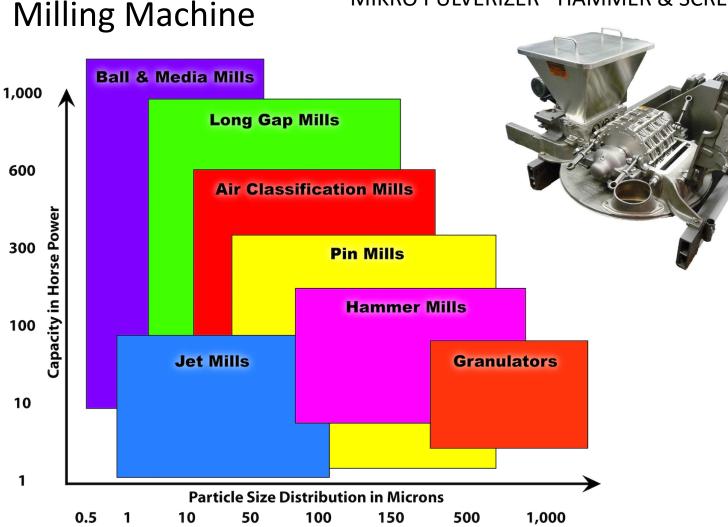
- 1. Oven
- 2. Parr Reactor
- 3. Glassware

Lab Instrument


Depend on Equipment


If exothermic reaction, Heat required = reaction temperature + remove heat of reaction Chemical process upscaling for production line integration 19

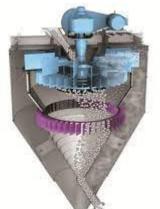
Understand Rate-Controlling Steps


- Reaction-rate controlled (kinetic controlled)
- Low temp region
- Effectiveness factor = 1
- Rate $k_{obs} = k$
- Pore diffusion-rate controlled
- Medium temp region
- Effectiveness factor < 1
- Rate $k_{obs} = \eta k \text{ or } k/\Phi_s$
- Bulk diffusion-rate controlled
- High temp region

Understand Hydrodynamic

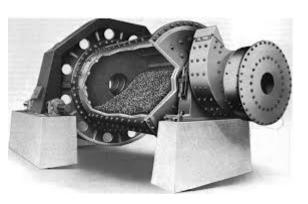
Chemical process upscaling for production line integration

MIKRO PULVERIZER® HAMMER & SCREEN MILL


Choosing the Right Mill System

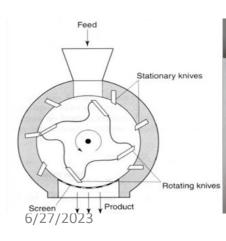

- What is the Material
- What Are the Application Requirements?
- Which Machine Do I Need?
- Is It a Small Scale Process, or is the Plan to Scale Up?
- Safety and Exposure: What Safety Mechanisms Might Be Needed?
- What are Your Cleaning and Sanitation Requirements?

Milling Machine



Hammer Mill

Air Classifier for Cement,



Pin Mill

Ball Mill

Fluidized bed jet mill

Cutting Mill

Mikro LGM [®] Long Gap Mill – Hosokawa Micron Powder Systems Chemical process upscaling for production line integration

Microfluidizer

Type of Dryer

Tray Dryer or Vacuum

- Air Flow
- Air Temperature
- Depth of Tray
- Moisture Probe
- Drying time 6/27/2023

Fluidized Bed Dryer

- Air Flow Rate
- Air Temperature
- Air Humidity
- Optimum Load
- Drying time

hopper dehydrator draught fan rotary cylinder dust collector convevo combustion chamber rotary dryer conveyo EXHAUST AIR **final products** STAINLESS BELT WITH CON-TROLED CONVEYING SPEED Belt conveyor dryer WET PRODUCT HEATING AIR GENERATOR Can use a wide range of power feeding (biomass, gas, steam, fuel... DRIED PRODUCT OUT

Chemical process upscaling for production line integration

Type of Dryer

Spray Dryer

Rotary Cone vacuum dryer (RCVD)

Rotary Vacuum Paddle Dryer (RVPD)

24

Conclusion Instrument & Equipment process scaling up

- ✓ Available equipment & instrument selection (Practical)
- ✓ Use old fashion equipment (Conventional)
- ✓ Conventional energy source (Steam, Electrical)
- ✓ Low worker & easy operation (Less to do by human)
- ✓ Adjustable parameter (Wide range)
- ✓ Understand hydrodynamic regime (Heat & Mass transfer)
- ✓ Understand chemical reaction (Heat of Reaction & Kinetic)

Scale up team for industrial approach

- 1. Marketing Team, (Problem Provider)
 - Who will buy our sustainable technology? Why? What value does the technology bring to potential customers?
- 2. Researcher Team, (Solution Provider)
 - develops new process and determines key process information such as reaction rates, phase interactions and operating temperatures and pressures.
- 3. Engineer Team, (Potential Provider)
 - takes key process information from chemist and develops a safe design that includes vessel dimensions, materials of construction, specifications for mechanical equipment, hydraulic calculations and process control/instrumentation philosophies.

What are the main skills needed to scale up chemical processes?

https://www.quora.com/What-are-the-main-skills-needed-to-scale-up-chemical-processes How I've seen new processes successfully scaled up generally follows this pattern:

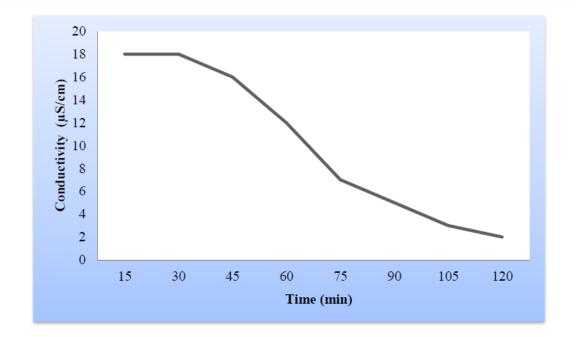
Chemist not chemical engineer

- 1. Chemist researches and develops new process and determines key process information such as reaction rates, phase interactions and operating temperatures and pressures.
- 2. Chemical engineer takes key process information from chemist and develops a safe design that includes vessel dimensions, materials of construction, specifications for mechanical equipment, hydraulic calculations and process control/instrumentation philosophies.
- 3. From this design, some fairly detailed capital and operating cost estimates can be established which allow for a green/red light decision.
- 4. Assuming a green light, mechanical, electrical and civil engineers are brought on to complete the detailed design.

5. Equipment is procured and construction contractors and specialty tradespeople are brought in to put the thing together.

The key to projects is getting the right people on the project at the right time to do the right thing. I've seen quite a few people try to skip straight from step 1 to step 5 and just build the thing because they don't want to spend money on the design and end up with a product that is unusable because it doesn't meet code, doesn't work properly, is unsafe and/or runs way over budget.

My advice is to figure out what you can do with the training you have. Find the right people with the right training to do the other jobs


Case study I BCG strategy from Laboratory to Production Scale

1. Determination of virgin paper production feasibility from bagasse

The materials used included bagasse, NaOH, Na2S, a blender, hot plate, set of sieves, an oven, plastic dish, sponge, nylon cloth, and water. 30g of bagasse was weighed on an electronic balance. 3g of NaOH and 3g Na2S were added to a large glass beaker containing 500 ml of water and the resulting mixture was stirred.. The paper was left on the tray on top of the nylon cloth and left to dry overnight at 70°C.

2. Determination of residence time for virgin papering (Rate Limiting Step)

Case study I BCG strategy from Laboratory to Production Scale

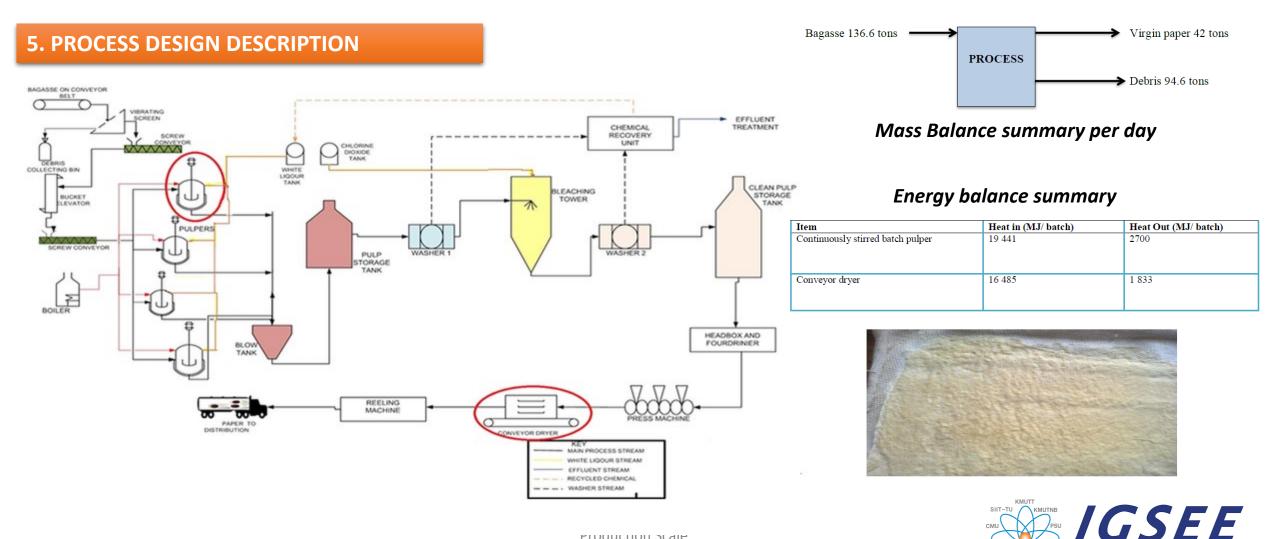
3. Determination of virgin paper biodegradability and **Other Standard**

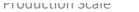
the biodegradability and over which the paper 227.3 days will remain in an aerobic environment. This is done by measuring reduction in mass as a function of time that the paper is exposed to micro bacteria (Table 3). The paper is estimated to be fully degraded after 7.6 months. The results showed that the paper is biodegradable thus production of virgin paper from bagasse is a green solution to environmental and pollution management.

Table 3. Biodegradability results on virgin paper from bagasse

Sample	Initial mass, M ₁ (g)	Final mass, M ₂ (g)	Difference in mass,	$\frac{M_1 - M_2}{M}$	BD (%)
			$M_1 - M_2$	M ₁	(70)
1	3.78	3.74	0.04	0.010	1.10
2	3.65	3.61	0.04	0.010	1.10
3	3.74	3.68	0.06	0.016	1.60
4	3.60	3.52	0.08	0.022	2.20
5	3.56	3.50	0.06	0.017	1.70

4. Determination of the effect of various pulping chemicals on the cooking rate


Experiment	NaOH	Na ₂ S	Na ₂ CO ₃	Result
1	Absent	Present	Present	The bagasse could not be mechanically pulped by the blender
2	Present	Absent	Present	A greyish mixture of unreacted bagasse and pulp was obtained
3	Present	Present	Absent	The bagasse took a long time to react with vigorous stirring periodically
4	Present	Present	Present	The bagasse was chemically weakened and easily mechanically blended


Table 2. Effect of various chemicals on the pulping of bagasse paper

The purpose of NaOH is to degrade lignin and that of Na2S is to fasten the cooking reactions and to decrease cellulose degradation caused by NaOH


Case study I BCG strategy from Laboratory to Production Scale

Case study I BCG strategy from Laboratory to Production Scale

6. EQUIPMENT DESIGN - Stirred batch pulper design

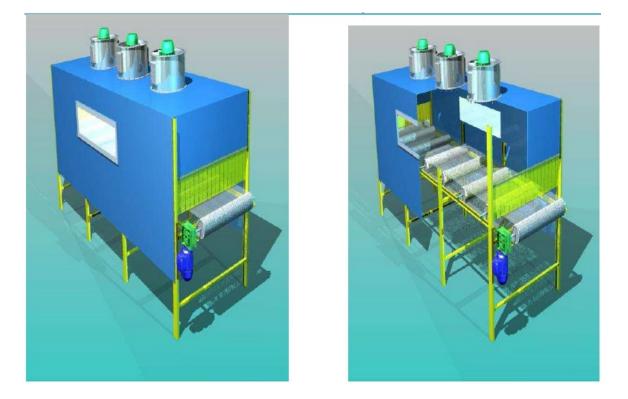
Stirred batch pulper with cross section showing position of agitator

Table 5. Stiffed batch pulper design specifi	cations
CHEMICAL ENGINEERING DESIGN	
Number required	4
Height	4.34 m
Nominal diameter	2.17 m
Volume	16 m ³
Nominal pulper thickness	0.022 m
Number of heating coils	8.4
Design pressure	1 167 kPa
Jacket thickness	0.30 m
Material of construction	Carbon steel
MECHANICAL ENGINEERING DESIGN	
Weight of contents	1 876 kN
Maximum bending moment	21.3 kNm
Maximum compressive stress	1.931 kN
Wind load	1.572 kN

 Table 5. Stirred batch pulper design specifications

6/27/2023

Case study II Chemical synthesis strategy from Laboratory to Production Scale


Case study I BCG strategy from Laboratory to Production Scale

6. EQUIPMENT DESIGN

- Conveyor dryer design

CHEMICAL ENGINEERING DESIGN	
Number required	1
Function	Drying of wet paper web into virgin paper
Operation	Continuous
Number of heater-fans	3
Area	18.14 m^2
Length	4.77 m
Slicing width	3.8 m
Height	3.8 m
Volume of dryer	69 m ³
Operating temperature	205°C
Operating pressure	1 atmosphere
MECHANICAL ENGINEERING DESIGN	
Feed weight on belt	6.2 N
Maximum tensile stress on belt	137 N
Creep strength	581 kN

Dryer rates are high because of the large area of contact and short distance of travel for the internal moisture. Conveying-screen dryers are fabricated with conveyor widths from 0.3- 4.4m sections. The important parameters that were calculated are the volume, area, slicing width, height, length, conveyor speed of belt, powerrequired by blower and heater-fan.

Conveyor dryer (a) South east view, (b) Section view

Case study I BCG strategy from Laboratory to Production Scale

Table 7. Specifications for sized ed	minmont	- 1. A	- 10-	-
BLOW TANK		Waste paper	La de constante	10 million
Volume	3.54 m ³	Waste paper	Hydrapulper	Vibrating screet
Diameter	1.44 m			
Height	2.16 m			
Material of construction	Carbon steel			
BLEACHING TOWER		Pressure screet		
Volume	3.5 m ³	Friesdule sules		Pulp pump
Diameter	1.14 m			
Height	2.16 m	v		
Material of construction	Stainless steel	AN I		4 10
STORAGE TANK		A State		
Volume	11.4 m ³			
Diameter	2.58 m	Kraft paper making ma	achine Wir	nding machine
Height	3.87 m			
Material of construction	Stainless steel			

Gravity cylinder thickner

Rewinding machine

Fiber Separate

Reject separator

Jumbo roll

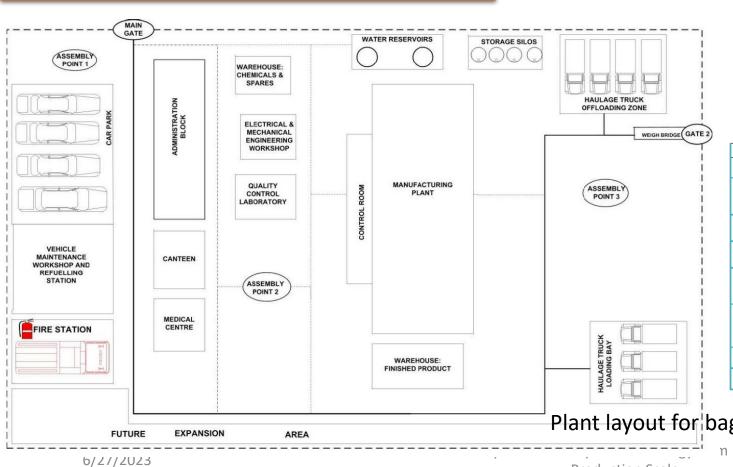
6/27/2023

Production Scale

Case study I BCG strategy from Laboratory to Production Scale

7. ENVIRONMENTAL IMPACT ASSESSMENT

Table 8. Summarized impacts and mitigation measures for the bagasse to paper plant


Stage	Negative impacts	Positive impacts	Mitigation measures
Construction	Noise and vibrations		Dampening instruments and ear protectors e.g. ear muffs to minimize vibration
	Destruction of natural ecosystem	Construction of access roads and service facilities	Vegetation replacement
	Land pollution		Erection of waste disposal bins on site and frequent litter picking
	Air pollution		Pre-treatment of effluent gases
Operation	Water pollution Air pollution	Continual development of the area	Minimize harmful emissions into water and air by thorough pre-treatment of effluent
Decommissioning	Inability to rehabilitate land Ghost sites creation Unemployment	Facilities can be used for other purposes such as training facility for locals	Train staff entrepreneurial skills

- Environmental legislations and laws; Environmental Management Act Chapter 20:27,
- Atmospheric Pollution Prevention Act Chapter 20:03,
- Zimbabwe National Water Authority Act Chapter 20:25,
- Hazardous Substances and Articles Act Chapter 15:05,
- Forestry Act Chapter 19:05,
- Water Act Chapter 20:22,
- Pneumoconiosis Act Chapter 15:08
- Factories and Works Act Chapter 14:08. According to the environmental impact assessment (EIA), the potential impacts and their mitigation are indicated in Table 8.

Case study I BCG strategy from Laboratory to Production Scale

Production Scale

8. SITE SELECTION AND PLANT LAYOUT

The principal factors that were considered in the optimum design of the plant layout were the process requirements, convenience of operation, economic considerations (construction and operation costs), and safety of workers and visitors to the site.

 Table 9. Description of Chiredzi site

Factor	Description				
Plant location	Near outskirts of sugar plantations				
Availability of water	Municipal water, dams and/or boreholes, Save, Runde and Mkwasine river.				
Population density	Semi-populated				
Political stability	Stable				
Availability of land	Plenty. The land is generally flat, well drained and has suitable load-bearing characteristics.				
Local community considerations	Provision of hospitals, post offices, schools, police stations and other necessary facilities from which plant personnel can benefit.				
Labour availability	Unskilled labour available				
Market	Marketing area mainly Harare and Mutare.				

Plant layout for bagasse virgin paper processing plant

n Laboratory to

Case study I BCG strategy from Laboratory to Production Scale

9. ECONOMIC ANALYSIS

Capital cost calculation (Purchased equipment cost)

Table 10. Purchased equipment cost

Equipment	Number of pieces	Unit cost (\$)	Total cost (\$)
Vibratory screens	1	6 000	6 000
Blow tank	1	11 000	11 000
Pulper	4	10 000	40 000
Blow tank	1	12 000	12 000
Bleaching tank	1	17 100	17 100
Rollers	10	1 000	10 000
Presses	3	1 400	4 200
Paper making machine	1	25 000	25 000
Conveyor dryer	1	26 000	26 000
TOTAL			151 300

Table 11. Direct costs

Component	Range %	Selected	Amount \$
Raw materials	$(10\sim50)$ of production cost	20	46 237.28
Operating labour	(10~20) of production cost	15	34 677.96
Utilities	(10~20) of production cost	15	34 677.96
Maintenance and repairs	(2~10) of fixed capital	5	11 559.32
Operating supplies	(10~20) of maintenance	15	1 733.90
Lab charges	15 of labour	15	5 201.70
Patents and royalties	(0~6) production cost	5	11 559.32
TOTAL			145 647.44

Table 12. Indirect costs

Item	Chosen %	Cost \$
Engineering and Supervision	33 of E	49 929
Contingency	42 of E	63 546
Construction expenses	41 of E	62 033
Contractor's fee	21 of E	31 773
TOTAL		207 281

Case study I BCG strategy from Laboratory to Production Scale

9. ECONOMIC ANALYSIS

Fixed capital investment

Manufacturing fixed-capital investment represents the capital necessary for the installed process equipment with all auxiliaries that are needed for complete process operation.

FCI = $\$(207\ 281 + 145\ 647.44)$ = $\$352\ 928.\ 44$ \approx $\$353\ 000$ = 20% of FCI = $0.2\ x\ \$353\ 000$ = $\$70\ 600$

Total Capital Investment, TCI

= FCI + WCI	

= \$(353 000 + 70 600)

= \$ 423 600

Total production cost

This is the sum of the total manufacturing cost and total general expenses. Fixed costs are shown in Table 13.

Table 13. Fixed costs

Component	Range %	Selected	Amount \$
Fixed charges	(10~20) of FCI	11	38 830
Depreciation on machinery	10 of FCI	10	35 300
Depreciation on buildings	(2~3) of FCI	2	7 060
Local taxes	(1~4) of FCI	3	10 590
Insurance	(0,4~1) of FCI	1	3 530
TOTAL			95 310

The cost of plant utilities is given in Table 14.

 Table 14. Power and utilities cost

Utility	Units / year	Cost / unit (\$)	Total annual cost (\$)
Steam	2 364.70	6.97	16 481.92
Electricity	395 566 kWh	0.15 / kWh	59 335
Water	$260\ 000\ {\rm m}^3$	$2 / m^3$	520 000
TOTAL			595 816
· -			

Case study I BCG strategy from Laboratory to Production Scale

9. ECONOMIC ANALYSIS

		Table 15. General expenses
Maintenance and repair costs	= 10% of FCI	Item
		Administrative costs
	= 0.1 x \$353 000	Distribution and selling costs
	= \$35 300	Research and Development
		Financing (interest)
Direct production cost	$= \$(595\ 816 + 35\ 300 + 95\ 310)$	TOTAL
	= \$726 426	
Plant overhead cost	= 10% of raw material cost	Total Production Cost, TPC
	= 0.1 x \$46 237.28	
	= \$4 624	
Total manufacturing cost, MC	= Plant overheads + Production cost	9.3 Profitability analysis Production capacity per year
	= \$4 624 + \$ 726 426	
	= \$731 050	

General expenses for the plant are shown in Table 15.

 Table 15. General expenses

Item	Range %	Chosen %	Cost \$
Administrative costs	2-6 of MC	2	14 621
Distribution and selling costs	12-20 of MC	12	87 726
Research and Development	5-7 of MC	5	36 553
Financing (interest)	0-10 of FCI	10	35 300
TOTAL			174 199

=Manufacturing cost + General expenses = (731 050 + 174 199)

=\$905 249

= 42TPD x 260 days

= 10 920 tons

6/27/2023

Case study II Chemical synthesis strategy from Laboratory to **Production Scale**

Case study I BCG strategy from Laboratory to Production Scale

9. ECONOMIC ANALYSIS		Tax paid	= 0.3 x Gross profit
	_ Total production cost		= 0.3 x \$274 111
Production cost per unit	$=\frac{10tat production}{Total production}$		= \$82 233
	\$905 249	Net profit	= Gross profit – Tax paid
	10 920tons		= \$274 111 - \$82 233
	= \$82.89 / ton		= \$191 878
Adding a 30% mark up:	= \$83 / ton	Return on investment and paybe ROI	ack period $=\frac{191\ 878}{423\ 600}\ \ x\ 100\%$
Selling price for virgin paper	$=\frac{130}{100} \times \$83/ton$		
	= \$108		= 45 %
Total revenue	=10 920 ton/ year \times \$108 /to	on PB	$=\frac{100}{45} \ge 1 \text{ yr}$
	=\$1 179 360		= 2.2 years
Gross profit	= Total revenue – Total proc	luction cost	2.2 years
	= \$1 179 360 - \$905 249		
	= \$274 111		XMI TT

Case study II Chemical synthesis strategy from Laboratory to Production Scale

Case study I BCG strategy from Laboratory to Production Scale

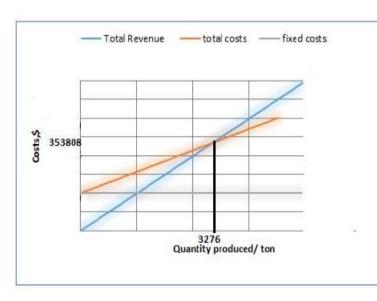
9. ECONOMIC ANALYSIS

Net present value

A plant lifespan of 10 years was assumed considering the technological advancement and the net present value is indicated in Table 16.

Table 16. Net present value determination

Year	Net Cash Flow (\$)	Discounting factor	Present value (\$)
0	-423,600.00	1	-423,600
1	191,878	0.909	174,417
2	191,878	0.826	158,491
3	191,878	0.751	144,100
4	191,878	0.683	131,053
5	191,878	0.641	122,994
6	191,878	0.564	108,219
7	191,878	0.513	98,433
8	191,878	0.466	89,415
9	191,878	0.424	81,356
10	191,878	0.38	72,914
Total			1,181,393
Net present value			757,792.85

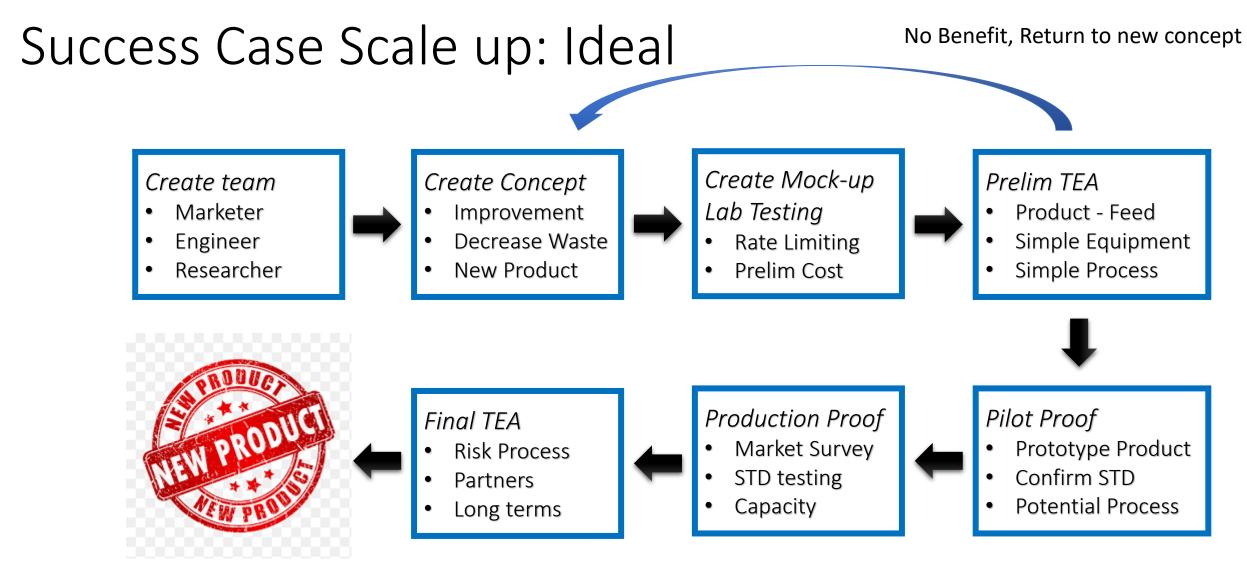

Break even analysis

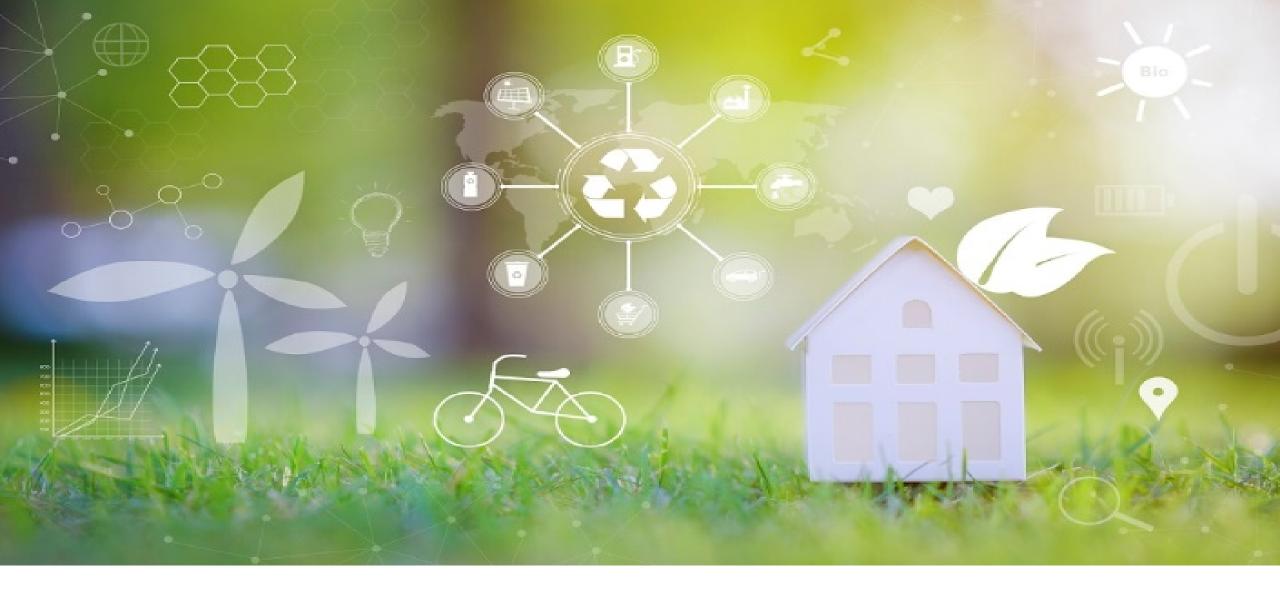
Number of units needed to break-even point

 $=\frac{30}{100} \times 10920$ tons

= 3 276 tons

Break even in monetary terms




= 3 276 tons x \$108 / ton

= \$353 808

Break even chart

BCG for sustainability

Suchat Pongchaiphol, Ph.D. 090-9826671 suchat.pongchaiphol@gmail.com

https://interloop.co.th/ministry-sets-up-panel-devoted-to-bcg-economy/