

Making our world more productive

TIChE Asia 2023 Hydrogen Economy & Hydrogen **Fuelling**

June 22, 2023

Vishal Pandey, Linde plc

Overview about Linde Plc

World's largest industry Gas & Engineering company

- → Formed in 2018 with the merger of Linde AG and Praxair, Inc – two world-class companies with nearly 140 years of shared history and successful achievements
- → The leading industrial gases and engineering company. Two divisions Linde Gas and Linde Engineering

160 Bn USD\$ Market Cap

\$31 Bn Revenue 2021

One Linde

Uniting with a shared Vision, Mission and Strategic Direction, and demonstrating our Values and Behaviors in everything we do

2 million+

Establishing a more diverse and balanced portfolio

100+

countries

Enabling strong, complementary positions in all key geographies and end markets

~\$15 million

charitable giving and sponsorships in 2018

Supporting our communities through contributions and employee volunteerism

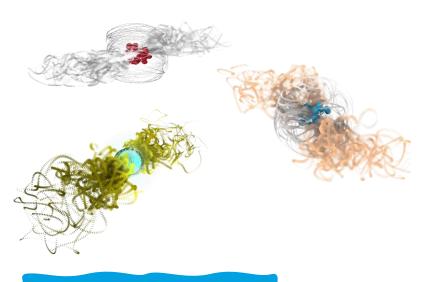
~80,000 employees

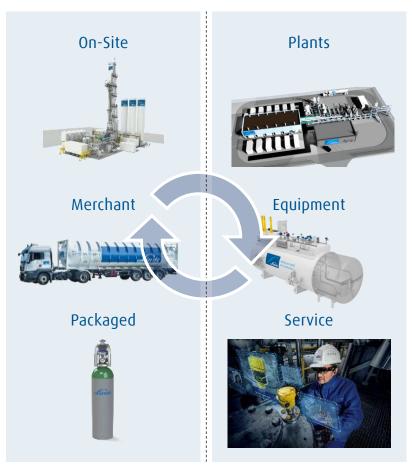
Achieving our full potential, individually and collectively

6,500+
active patent assets
worldwide

Leading with innovative products, solutions and technologies

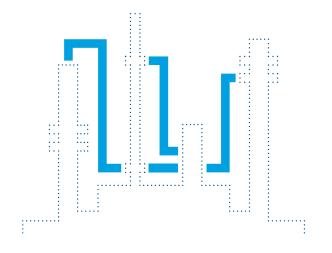
Linde Industrial Gas Assets & Technologies




02, N2, H2, NH3, Syngas, rare gases, specialty gases, LNG....

Gases

Linde's core business to produce oxygen, hydrogen.



World-class operations of over 1,000 plants

Synergies

Engineering & Technologies Plant & Equipment Supply

Technology-focused with more than 4,600 plants built

Linde already has a world-scale hydrogen asset portfolio

Hydrogen technologies and assets

H2 molecules sales today @\$3 B

Production

SMR, ATR, POX, ... >8000 tpd H2 today
158 large H2 plants

...with CCU/S

Ammonia & methanol plants

11 plants

Electrolysis
80 electrolysers/40 MW in operation

Processing/Distribution

Liquefaction 200 tpd LH2

H₂ refueling stations

> 200 HRS built

Trailers

1600 trucks

Underground storage Salt cavern *>6000 tons H2*

Pipelines > 1000 km

Equipment & Tech Offerings

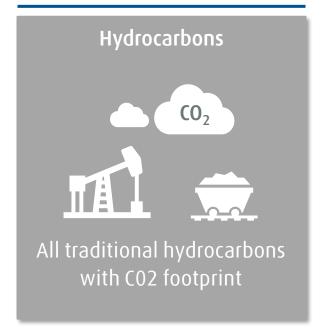
Hydrogen assets across the globe; 100 years of experience building, owning and operating hydrogen assets

Blue H₂

Green H₂

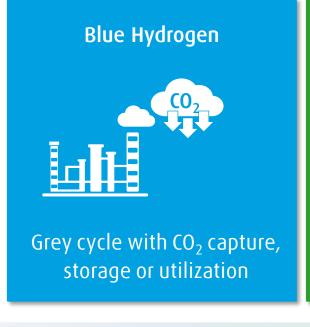
H₂ Distribution, Conditioning & Application

Ability to leverage existing infrastructure, technology & expertise - agnostic to the color of the molecule


Clean Energy Opportunity

Clean Energy = Carbon Solutions + Blue & Green Hydrogen

Today's Energy Market



Carbon solutions

CO₂ capture from industrial processes with CO₂ storage or utilization

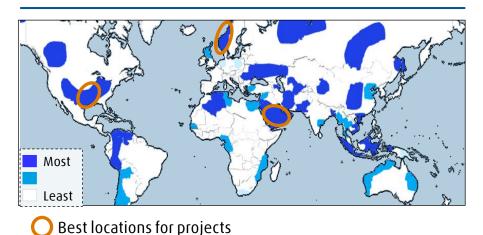
Clean Energy Opportunity in 2030²

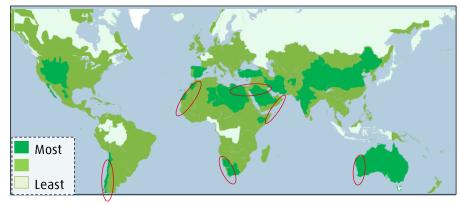
Electrolysis powered by Renewable Energy with no CO₂ emission

Estimated Clean Energy Sales in 2030²

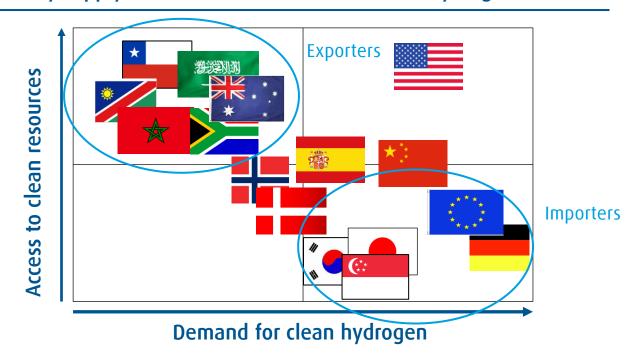
1.5% of today's Hydrocarbon market ...

... and comparable to today's industrial gases market size


The best location for production of blue and green hydrogen



Best locations for Natural Gas + CCS


best locations for projects

Best locations for Wind + Solar Use

Best locations for projects

Cross-country supply-demand combinations for Clean Hydrogen

- EU and North-East Asia will remain largely dependent on energy imports
- Middle East will remain a major exporter with Clean Energies
- New major export players expected with **Australia**, **Morocco**, **Namibia**, **Chile etc**.
- **US** self-sufficient with potential exporter globally

Linde's Developments for Decarbonization Global Examples¹ of Linde's Investment in H2 and NH3

<u>Niagara Falls, New York</u> 35MW Electrolyzer (w Hydropower)

• Largest electrolyzer installed by Linde to date

Onstream:~2025

OCI, Beaumont, Texas 1.8b USD investment

To supply 1.1 MTPA NH3

- H2 Projects
- 10 NH3 Production Plants in Operations (up to 1000 TPD); 2 BOO by Linde
- Low-Carbon NH3 Projects Under Development

<u>Leuna, Germany</u> 24MW Electrolyzer for Mobility (liquid H2) & Existing Industries

- To supply world's first H2-fueled ferry
- Onstream: 2022

Energiepark Mainz, Germany 6MW Electrolyzer (w Wind Power)

Onstream: 2015

Porsgrunn, Norway 24MW Electrolyzer for Yara's NH3 Production

- 20,500 tpa of ammonia
- Online 2023

<u>Singapore</u>

9MW Electrolyzer for Chemical Feedstock

Onstream: ~2025

Equinor, Saltend, UK Linde Engineering FEED

500 MW ATR

Villach, Austria 2MW Electrolyzer

• Green H2

Saudi Arabia

Large-Scale Blue NH3 Production

• Onstream :~2026

Oman Large-Scale Green NH3 Production

• Onstream:~2027

Northern Territory Large-Scale Blue NH3 Production

• Onstream:~2027

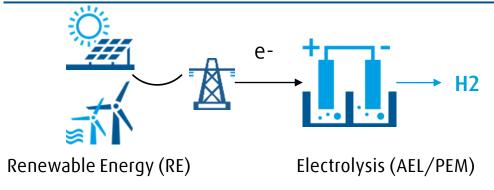
Queensland, Australia Australia's First Green H2 Refuel Station

- Linde-BP collaboration
- H2 supplied from electrolyzers using solar

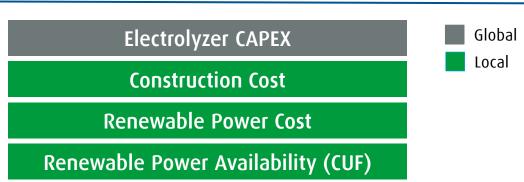
<u>Southern Australia</u> Large-Scale Green NH3 Production

Onstream :~2027

¹Selected references; non-exhaustive


Clean Hydrogen Imports

Green Hydrogen Production



Green Hydrogen Production Route

Green Hydrogen Main Cost Factors

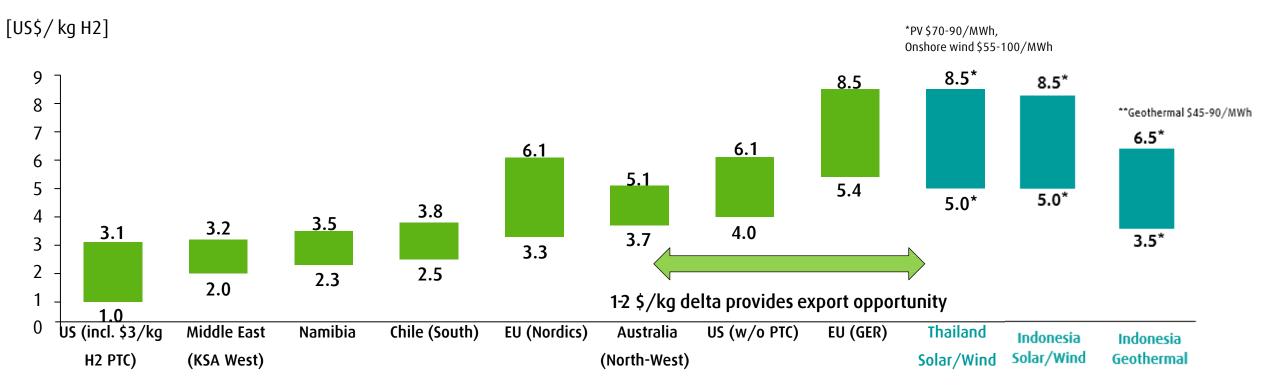
Green Hydrogen Cost Sensitivity Model for Power Price and Renewable Availability

Green hydrogen production today

RE Availability (CUF)	20%	40%	60%	80%
Power Cost (\$/MWh)				
\$80/MWh	10.7	7.7	6.7	6.2
\$60/MWh	9.6	6.5	5.5	5.0
\$40/MWh	8.4	5.4	4.4	3.9
\$20/MWh	7.3	4.3	3.2	2.7

Mid-long term target green hydrogen production

\$20/MWh	4.0	2.6	2.1	1.9
\$40/MWh	5.2	3.8	3.3	3.0
\$60/MWh	6.3	4.9	4.4	4.2
\$80/MWh	7.5	6.1	5.6	5.4
Power Cost (\$/MWh)	200/-	400%	C00/s	900/-
RE Availability (CUF)	20%	40%	60%	80%


w/o public incentives, green H2 below \$2/kg not realistic today... and will remain a challenge for the future

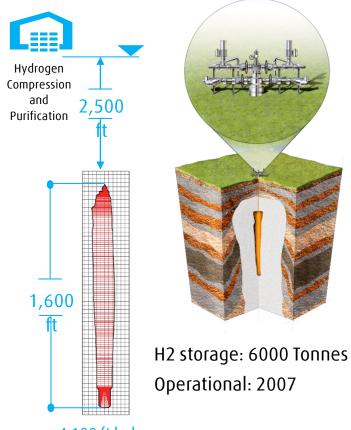
Clean Hydrogen Production - Green

Renewable power cost is key for green hydrogen

without public incentives, green H2 below \$2/kg not realistic today... and will remain a challenge for the future

^{*}Variables are Levilised Cost of Electricity (\$20-100/MWh), utilization factor (20-80%) & Capex for hydrogen production

Hydrogen pipeline distribution and storage


Location: Texas

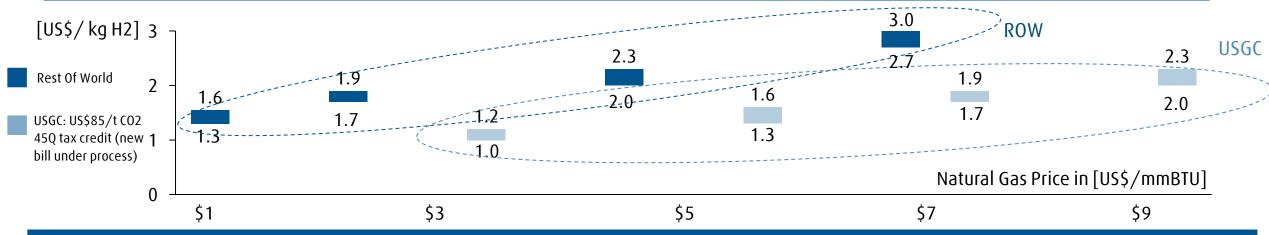
Pipelines: > 1000 km

Multiple sources provide high reliability of supply

	H2 Pipeline
H2 Sources/HMUs (>3000 tpd)	>20
Customers	>40

Linde's H2 storage cavern provides a buffer for daily and seasonal storage

Clean Hydrogen Production - Blue

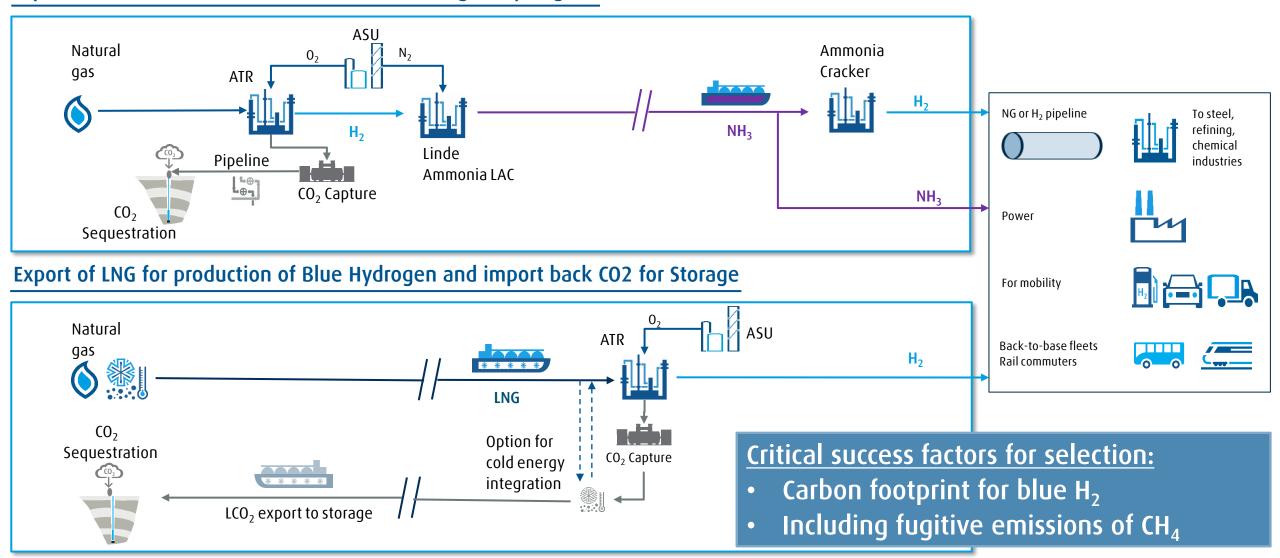


Blue Hydrogen remains a viable pathway for the foreseeable future

Blue H2 expected in the range of 1.5-3.0 US\$/kg within typical cost range for Natural Gas, and USGC 1.0-2.5 US\$/kg

11 Source: Linde Internal analysis

CCS opportunities for Blue Hydrogen in Thailand


Export i. Blue ammonia or ii. Export LNG with CO2 return?

Export of Blue Ammonia for direct use or Cracking to Hydrogen

Linde & SLNG to develop CO₂ facility for Singapore CCS

SLNG and Linde team up for CO2 facility in Singapore

BUSINESS DEVELOPMENTS & PROJECTS

December 1, 2021, by Sanja Pekic

Singapore LNG (SLNG) and Linde Gas have signed a memorandum of understanding (MoU) to explore options of a CO2 liquefaction and storage facility at the SLNG terminal on Jurong Island.

The CO2 facility project concept involves using cold energy from the <u>SLNG</u> terminal's operations to liquefy CO2. It will also use both companies' combined expertise in carbon capture, liquefaction, as well as cryogenic storage and handling solutions.

They will store the liquefied CO2 (LCO2) in tanks onsite before they transport it later for end-use.

If feasible, this could be the first such facility in Singapore and the region. This refers to using existing cold energy from SLNG to liquefy CO2; thereby directly capturing CO₂ which would otherwise be emitted into the atmosphere.

Linde – SLB Global CCS Partnership announced 31st October 2022. Joint value proposition.

CO ₂	Offering of an integrated end-to-end CCS solution enabling a simplified path to decarbonization
	Proven CO ₂ capture technology portfolio
	Full value chain technology, EPC & operation capabilities
CO ₂	20+ years of experience in \mathbf{CO}_2 geological storage (subsurface characterization & modelling), project development & execution, operations & monitoring
	Flexibility of business & operating models to maximize value for all stakeholders
a de la	Strong international relationships across multiple sectors/industries

Linde, SLB & Saudi Aramco partnership to leverage CCS value chain Development of a 9 MTPA CO₂ storage hub by 2027

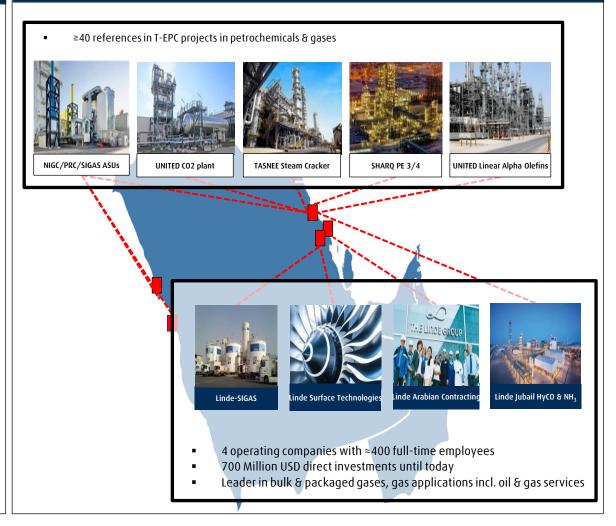
Linde Signs Agreement to establish CCS Hub with Saudi Aramco

ENVIRONMENTAL

SUSTAINABLE BUSINESS

Saudi Aramco Signs Agreement with SLB and Linde to Establish Carbon Capture and Storage Hub

esg. Esg News • November 11, 2022


Saudi Aramco signed a joint development agreement with SLB and Linde to establish a carbon capture and storage hub which will potentially be able to safely store up to 9 million tonnes of carbon dioxide a year by 2027, the company's CEO, Amin Nasser, said on Thursday.

Aramco is set to contribute around 6 million tonnes, he added, with the rest to come from other industrial sources.

See related article: Saudi Aramco Launches \$1.5 Billion Fund To Support Global Energy Transition

The facility will be located in Jubail on the east coast of Saudi Arabia with a goal of making a significant contribution to the 44 million tonnes the kingdom plans to capture by 2035.

Linde in the Kingdom of Saudi Arabia

Linde Engineering - Hydrogen FuelingHydrogen Fueltech GmbH for Hydrogen Mobility

Technology and product portfolio

GH₂ supply – ionic compressor

Outlet pressures500 or 900 barInlet pressure5-200 barCapacity28 or 56 kg/hEfficiency1-3.3 kWh/kg

Ionic compressor based hydrogen refueling stations

LH₂ supply – cryo pump

Outlet pressures500 or 900 barInlet pressure2-2.5 barCapacity40 or 100 kg/hEfficiency1.3-1.5 kWh/kg

Cryo pump based hydrogen refueling stations

Applications

Material handling

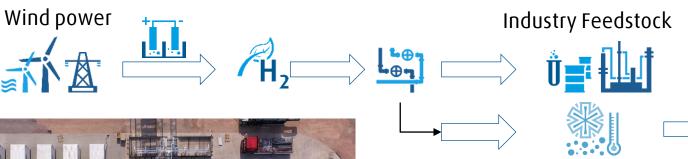
Light vehicles

Buses

Trucks

Trains

Hydrogen Transportation Fuel Concept

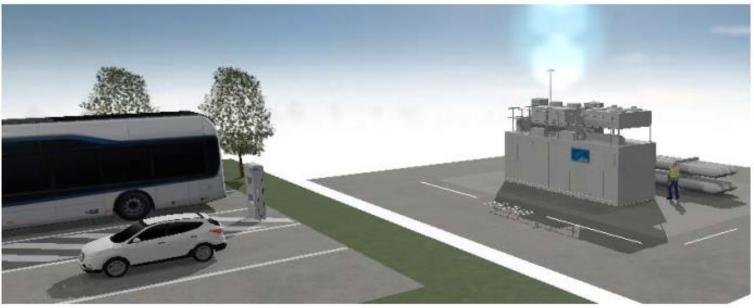

Integrated Green H₂ for Petrochemical Cluster and Mobility

- Today, Linde owns and operates ~200 tpd of hydrogen at the Leuna Petrochemical cluster.
- > Regulatory framework in the EU and Germany (RED II Renewable Energy Directive) is driving low carbon transportation
- Linde is investing in the largest PEM Electrolyser globally @24 MW to produce 10 tpd Green H2
- Linde has also invested in Linde proprietary hydrogen liquefiers, to supply its European network by trailer



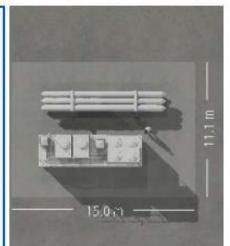
Example for an Ionic Compressor HRS supplied by tube trailer (GH2) 10 passenger cars & 15 trucks per day

Key assumptions & parameters:


- 10 passenger car fuelings & 15 trucks fuelings per day
 (5 kg resp. 30kg per vehicle, type IV tanks)
- Five passenger cars and four trucks per hour (max.)
- 18 hours fueling window
- Pre-cooling for trucks -10°C (Linde recommendation)
- Dispensing at 350bar & at 700 bar
- Distance to dispenser <30m (recommended)
- Trailer supply

Delivery time (Ex Works):

Standard station: ~12 months


Delivery time to Start-Up:

Standard station: ~15 months

Technical details

- 1x IC container incl. 1x IC90/30 and 1x IC-P50/60
 (56kg/h @ 50MPa & 28kg/h @ 90MPa; 8 x 2,4 x 4,1m)
- High pressure storage for 700 bar (1000 bar; 24x 50 l)
- Medium pressure storage for 500 bar (550bar; 4x 1200 l)
- 1x Dual 350/350 bar dispenser & 1x 700 bar dispenser
- Elec. power input: 186kW compressor container (w/o cooling)

Journey for Hydrogen Economy Reality Check

Today

Tangible projects are few

Costs remain high

New technologies/scaleup are busy but need more time

Standards lacking on low carbon

More regulatory support is required

Enablers for Future

Policy & Regulations

Government levers: carbon tax, grant, mandate, CfD etc; industries need certainty

Technologies

New application technologies; partnerships; scaleup

Costs

Scaleup; integration and optimization

Standards & Certifications

Universal standards to trade low carbon molecules; essential to operationalize low carbon solution

Enabling the energy transition

Vishal Pandey
Head of BD & Sales, ASEAN
Vishal.pandey@linde.com
+60176267001
www.Linde.com

