Large scale manufacturing:

Success and Lessons Learned

Purachet Pitipuech

Co-workers: Siriporn T., Penpitcha R., Wittaya J.

Precipitation processes scale-up challenges

Reaction kinetics

Fluid dynamics and agitation issues

Scale-up of crystallization

Thermodynamics

COGs

Equipment selection

Process interconnection point

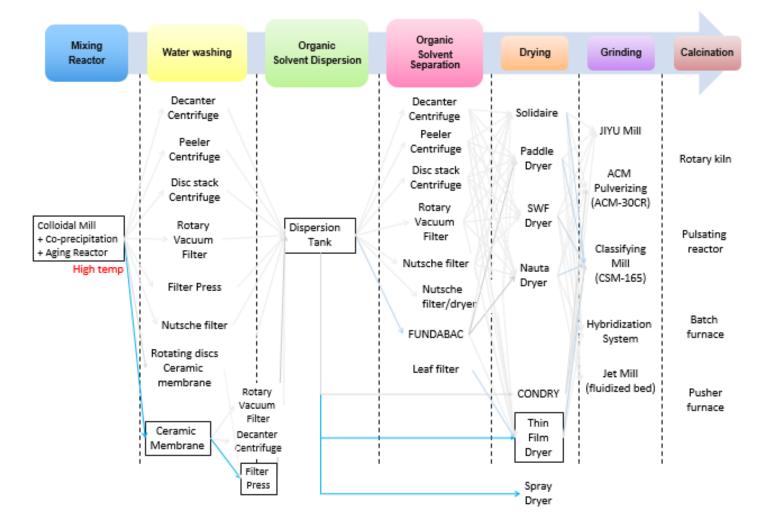
Technology transfer

CTQs

Toller evaluation

Products

Eco-friendly routing

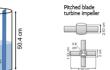

Pathway	Reaction	Atom utilization(%)
Metal Nitrate [18]	4 Zn(NO ₃) ₂ .6H ₂ O + 2 Mg(NO ₃) ₂ .6H ₂ O + 2 Al(NO ₃) ₃ .9H ₂ O + Na ₂ CO ₃ + 16 NaOH → Zn ₄ Mg ₂ Al ₂ (OH) ₁₆ (CO ₃).4H ₂ O + 18 NaNO ₃ + 50 H ₂ O	18.92
Metal Oxide	4 ZnO + 2 MgO + Al ₂ O ₃ + 18 HNO ₃ + Na ₂ CO ₃ + 16 NaOH → Zn ₄ Mg ₂ Al ₂ (OH) ₁₆ (CO ₃).4H ₂ O + 18 NaNO ₃ + 5 H ₂ O	34.78
Metal Chloride	4 ZnCl ₂ .4H ₂ O + 2 MgCl ₂ .6H ₂ O + 2 AlCl ₃ .6H ₂ O + Na ₂ CO ₃ + 16 NaOH → Zn ₄ Mg ₂ Al ₂ (OH) ₁₆ (CO ₃).4H ₂ O + 18 NaCl + 36 H ₂ O	28
Metal Sulfate	4 ZnSO ₄ .7H ₂ O + 2 MgSO ₄ .7H ₂ O + Al ₂ (SO ₄) ₃ .18H ₂ O + Na ₂ CO ₃ + 16 NaOH → Zn ₄ Mg ₂ Al ₂ (OH) ₁₆ (CO ₃).4H ₂ O + 9 Na ₂ SO ₄ + 39 H ₂ O	19.51
Hydro- thermal synthesis	4 ZnO + 2 MgO + Al ₂ O ₃ + 2 NaHCO ₃ + 11 H ₂ O → Zn ₄ Mg ₂ Al ₂ (OH) ₁₆ (CO ₃).4H ₂ O + Na ₂ CO ₃	90.32

Conceptual Process
Design

Page | 4

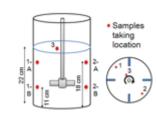
Process synthesis of crystal scale-up

Risk assessment – process flow

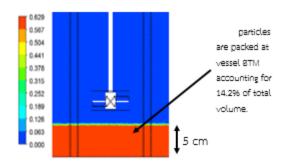


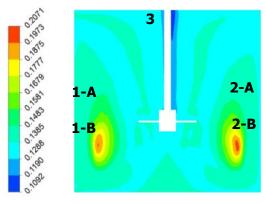
Crystal Reactor Modeling

- Crystal suspension in a mixing reactor required uniform solid distributions
 - Kinematic similarity is defined for mixing scale-up
- The CFD model to
 - Represent a uniform solid distributions of well mixing performance in lab-scale reactor
 - Utilize the same model to analyze and ensure well mixing of commercial-scale reactor
- Establish the CFD model configurations

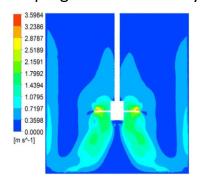

Multi-phase model:	Eulerian granular model	→ Recommended for modeling solid-liquid system	
Turbulence model: Standard k-epsilon mixture		 → Provide sufficiently consistent results → Save computational time 	
Inter-phase force:	Drag force Turbulent dispersion force	→ Needed in modeling solid-liquid system	
Drag force model:	Gidaspow (solid – liquid)	→ Give consistent results with experiment	

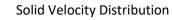
- Validate CFD model by comparing with experiment (9L flatted BTM cylindrical vessel with 4 baffles)
- 9L flatted BTM cylindrical vessel with 4 baffles and turbine impeller


Experimental conditions 990 RPM Rotational speed: Solid concentration in slurry: 14.2 vol. % Suspension time: 30 minute Samples taking at different locations to measure solid conc.



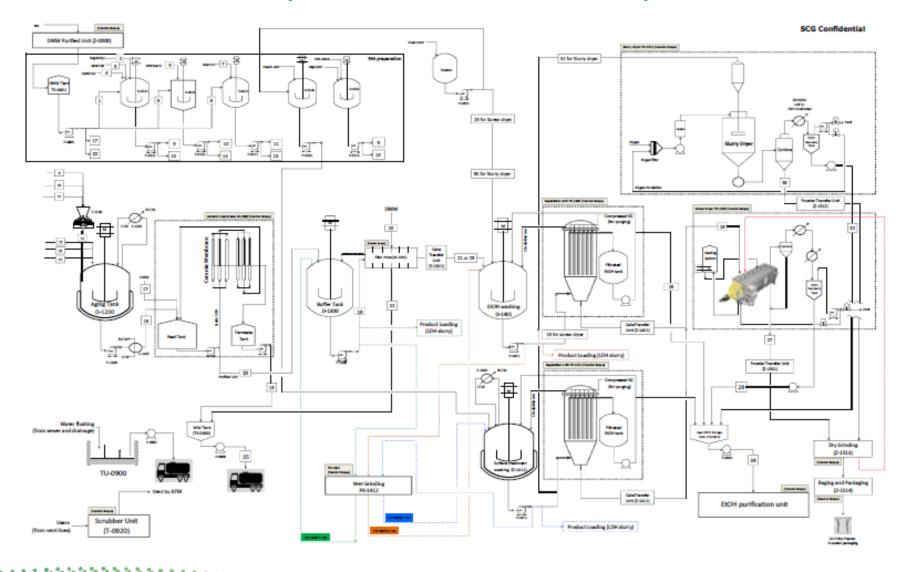
Crystal Reactor Modeling


- CFD simulation VS experimental result
 - ☐ Initial time

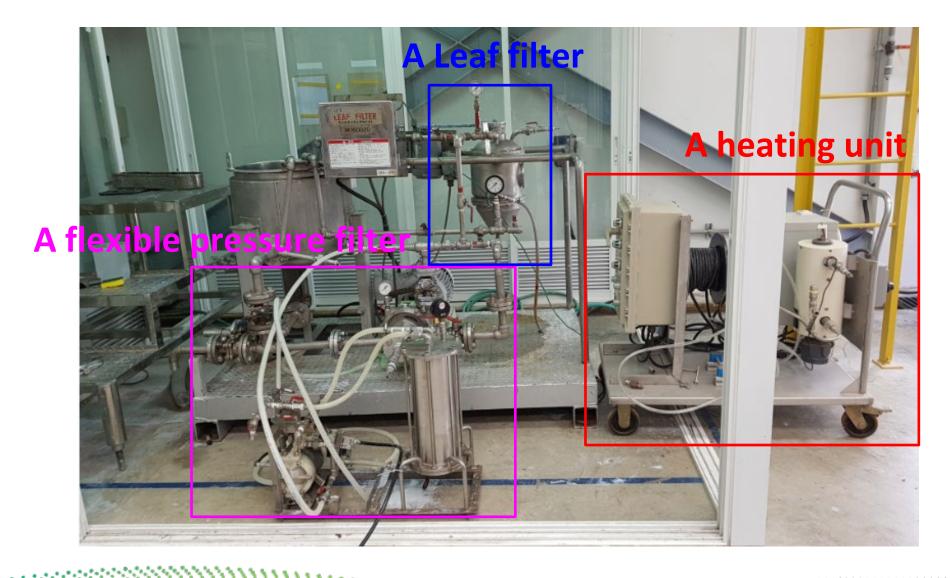


Solid volume fraction at steady stage

☐ Simulation progress until velocity inside reactor constant, i.e. steady stage


Solid Flow Pattern

	1-A	1-B	2-A	2-B	3
Experimental Result	13.919%	13.983%	13.825%	13.675%	13.814%
Simulation Result	13.848%	13.922%	13.771%	13.851%	13.565%
Percent Difference	0.510%	0.436%	0.391%	1.287%	1.803%

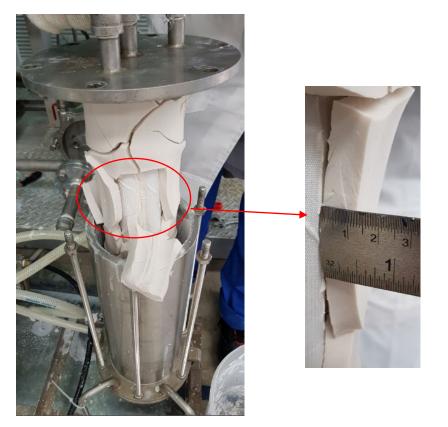

- CFD model configuration is able to represent crystal particles suspension
 - ✓ Prediction of solid volume fraction is very similar to the experiments, less than 2% difference
 - ✓ Confidence of using CFD model for commercial reactor design

PFD with less concern with process interconnection point

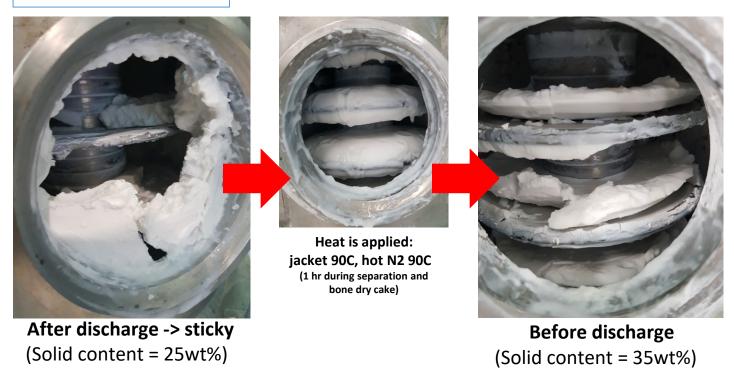
Process interconnection point

Simulation of Crystal filtration and Process interconnection

Flexible pressure filter pilot tests



Compressed N2 blow back


Inside the vessel

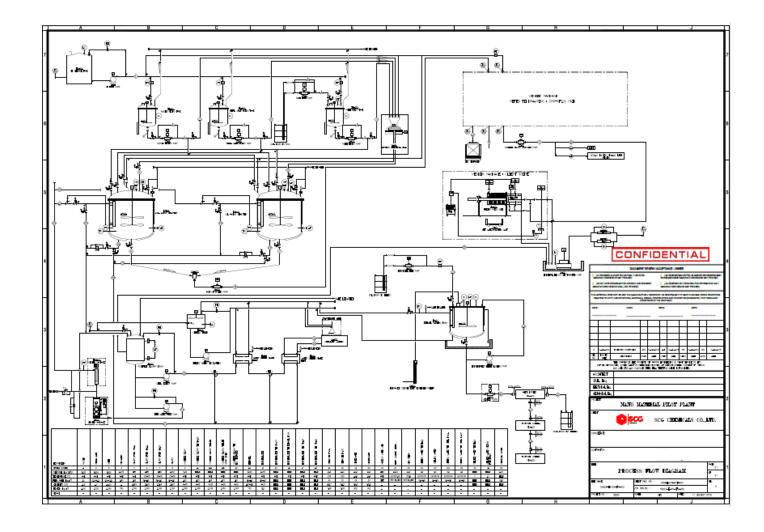
Simulation of crystal filtration and Process interconnection

Leaf filter pilot tests

- Measure specific filtration resistance
- Check the crystal compressibility
- Model the filtration dynamics and equipment selection through crystal properties and process technologies
- Know amount of filtrate, filtration area, and total cycle time to calculate capacity

Simulation of crystal drying

Scale-up


- Find the suitable equipment
- Set the optimum drying condition
- Predict the actual drying time

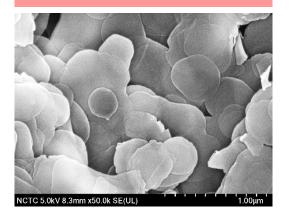
- Leave filtrated cake onto surface of filter media (mimic the condition)
- After drying for 1 hr

- Predict and model optimal conditions for drying via mock-up test with equipment vendors
- As shown, stable upscaling is achieved through continuous rotation to prevent conglomerate crystallization and by using shear force of agitator at the same time of drying

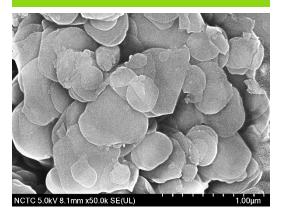
Precipitation pilot plant

CTQs and Application Needs

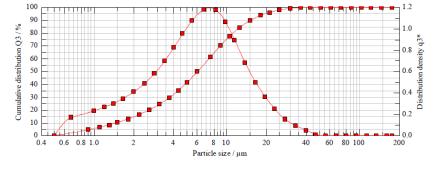
Connecting Application-A Needs

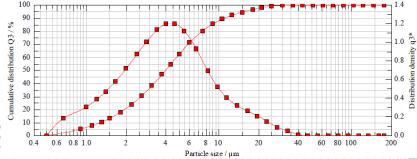

Properties	Parameters
Chemical composition	$\begin{split} &\text{Mg}_x\text{Zn}_{[3:n]}\text{Al-CO}_3 \text{ with/without Zn stearate, or other stearate types.} \\ &\text{Mg}_x\text{Zn}_{[3:n]}\text{Al-CO}_3 \text{ can potentially be:} \\ &-\text{Mg}_3\text{Al-CO}_3, \\ &-\text{Mg}_3\text{Zn}_2\text{Al-CO}_3, \\ &-\text{Mg}_2\text{Zn}_1\text{Al-CO}_3, \\ &-\text{Mg}_{1.5}\text{Zn}_{1.5}\text{Al-CO}_3, \\ &-\text{Mg}_{1.5}\text{Zn}_{0.5}\text{Al-CO}_3, \\ &-\text{Mg}_{2.5}\text{Zn}_{0.5}\text{Al-CO}_3 \end{split}$
Primary particle size	Platelet shape : 60 - 150 nm, preferable ~ 100nm (analyzed by particle size analyzer on wet samples)
Secondary particle size	Platelet shape : 200 nm – 5 μm, preferable ~ 2 μm (D50: Medium value of the particle size distribution)
Density of LDHs	1,150 - 1,400 kg/m ³
Shear Viscosity	6.8-E02 - 1.0+E01 Pa.s
Surface area	$50-100~\text{m}^2/\text{g}$, preferable $\sim 90~\text{m}^2/\text{g}$
Moisture content	≤ 2% (dry powder)
Bulk density	150 - 400 kg/m ³

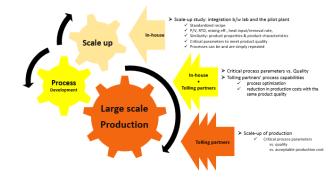
Connecting Application-B Needs


Properties	Parameters
Chemical composition	Mg ₂ AI-CO ₃
Primary particle size	$500 nm - 3 \ \mu m$ with platelet shape (analyzed by particle size analyzer on wet samples)
Aspect ratio (via Atomic Force Microscope)	20 - 200
LDHs Cake in EtOH or Ethyl acetate LDHs (suspension)	20 – 30% solid content
LDHs Slurry in EtOH or Ethyl acetate	5 – 10% solid content
Water content	≤ 4% in LDHs Slurry

Key Results: product properties similarity and product characteristics similarity


PD-1331 (Lab)


PD-1331 (Pilot Plant)


PD-1331 (Lab)

PD-1331 (Pilot Plant)

Physical Properties		PD-1331 (Lab)	PD-1331 (Pilot Plant)
BET (m²/g)		25.08 <u>+</u> 0.61	27.94 <u>+</u> 2.53
Bulk Density (g/cm ³)		0.18 ± 0.06	0.13 ± 0.01
Tap Density (g/cm³)		0.28 ± 0.10	0.17 ± 0.02
Moisture Content at 110°C (%)		0.78 ± 0.35	1.10 ± 0.24
	D10	1.67 ± 0.54	1.27 ± 0.15
DOD (D: 10 1 5) 11	D50	7.22 ± 3.25	4.12 ± 0.36
PSD (Dried Powder Form) μm	D84	15.76 ± 7.11	9.19 ± 0.94
	D90	19.53 <u>+</u> 8.31	12.10 <u>+</u> 1.46
Composition Mg : Al		5.14 <u>+</u> 0.03	5.09 <u>+</u> 0.14

- Scale-up study: integration b/w lab and the pilot plant
 - ✓ Standardized recipe
 - ✓ P/V, RTD, mixing eff., heat input/removal rate,
 - ✓ Similarity: product properties & product characteristics
 - ✓ Critical parameters to meet product quality
 - √ Processes can be and are simply repeated
- Applying product properties similarity and product characteristics similarity to scale-up and produce LDH-BR prototypes via pilot plant seem to hit the target which physical & chemical properties are quite close to one producing in the lab scale.

Large scale manufacturing: Success and Lessons Learned Technology transfer - Raw Materials Specifications (Ex.)

i. Plant water

Parameters	Unit	Value
Appearance	-	Slightly Turbid
pH at 25∘C		7-8
Turbidity	NTU	1.0
Conductivity at 25°C	us/cm	393
Calcium hardness as CaCO3	mg/L	49.5
Chloride as Cl ⁻	mg/L	39.4
Methyl orange alkalinity as CaCO3	mg/L	72.8
Phosphate as PO ₄ -3	mg/L	1.3
Iron as Fe	mg/L	0.06
Sulfate as SO ₄ -²	mg/L	38.6
Total dissolved solids dried at 180°C	mg/L	256
Total hardness as CaCO3	mg/L	76.8

ii. Reverse Osmosis water

Parameters	Unit	Value
Copper	mg/L	0.0001
Iron	mg/L	0.001
Manganese	mg/L	0.0001
Sodium	mg/L	0.1
Calcium hardness as CaCO3	mg/L	1
Chloride as Cl-	mg/L	0.2
Conductivity at 25°C	us/cm	0.5
Dissolved oxygen	mg/L	0.1
Magnesium hardness as CaCO3	mg/L	1
Methyl orange alkalinity as CaCO3	mg/L	1
pH at 25∘C		6-7
Phenolphthalein Alkalinity as CaCO3	mg/L	1
Phosphate as PO ₄ -3	mg/L	0.5
Silica as SiO2	mg/L	0.5
Sulfate as SO ₄ -2	mg/L	0.5
Total dissolved solids dried at 180°C	mg/L	5
Total hardness as CaCO3	mg/L	1
Total suspended solid dried at 103-105°C	mg/L	5
Turbidity	NTU	0.1

iii. Metal precursors and basic solution

Spec	cifications	Zn(NO3)2.6H2O	Mg(NO3)3.6H2O	AI(NO3)3.9H2O	NaOH	Na2CO3	Sodium Stearate
So	lid/liquid	solid (pellet)	solid (pellet)	solid (pellet)	50%w liquid	solid (pellet)	solid (pellet)
Pa	ckaging		25 kgs PP PE Bag	25 kgs PP PE Bag			20 kgs PP PE Bag
Ass	ay (min)	96-98%	98%	98%	99%	99%	
pH (10	1% solution)	3.6					
pH (25	i% solution)		3-5				
Bulk D	ensity (g/L)						200-260
Moi	sture (%)						< 2
Meltin	g point (°C)						210 -220
	ate ash (%						22 - 24.5
Water i	nsoluble (%)		< 0.01%			< 0.002%	
	idue 100 mesh (%)						< 0.5
lodine val	ue (g l2/100 g)						1
	atty acid (%)						< 2
	gnition/tsrying		< 2			0.040/	`_
	(%) Ba		< 50			0.21%	
	Ca		< 500	< 200			
	Cd		_				
	Cu						
	CI	< 700	≤100	< 50			
	Fe	< 500	≤ 5	< 50		10	
	Hg						
Impurities (ppm)	K			< 200			
9	Mn		≤50				
ie.	N		≥ 107,000				
=	Na			< 1,000			
<u>E</u>	Ni						
=	Pb	< 10	≤20	< 50			
	Na ₂ CO ₃				< 5,000		
	NaCl				< 500		
	Fe ₂ O ₃				< 20		
	NH ₄		> 154,000	< 300			
	MgO		≥ 154,000				
	PO ₄	< 500	1,000	< 200		200	
	SO ₄	< 500	≤ 200	< 200		300	
	SiO ₂					ļ	

Remarks for raw materials selection criteria

- There are some elements needed to be cautious due to the fact that it will affect product characteristics and qualities (such as color) and chemical properties therefore the raw materials must contain the least amount of the following impurities.
- Aluminum precursor is considered as major contributor to Fe impurity in the final product. High Fe levels in the final product have detrimental effect on product performance.

Elemental analysis	specification	Unit
Na	<u><</u> 300	ppm
Fe	<u><</u> 70	ppm
Pb	<u><</u> 1,500	ppm

Large scale manufacturing: Success and Lessons Learned Technology transfer - Preparation for basic solution and metal precursors (Ex.)

I. Mixed base solution

- 1) Weigh amount of RM-1 (solid pellet) according to synthesis recipe [RM-1 = 531 kg] $\pm 1 kg$ accuracy.
- 2) Fill the mixing tank with RO water until reach volume according to synthesis recipe [7,572 L].
- 3) Start an agitator of the mixing tank gently to maintain continuous mixing.
- 4) Gently fill RM-1 (solid pellet) to the mixing tank.
- 5) Keep Stirring for at least 1 hour to ensure complete dissolution of RM-1
- 6) Drain RM-1 solution at the bottom or take it from handhold at the cover of the preparation tank to cross-check all solid dissolved, solution should be clear.
- 7) Check RM-1 solution for pH and density vs. temperature using a pH meter, a density meter and a thermocouple, respectively to make sure they are in accepted range according to table-1^B
- 8) Gradually feed RM-2 (solution 50 wt.%) according to synthesis recipe [2,826 kg] <u>+1 kg</u> accuracy to the mixing tank via feeding nozzle^C and keep stirring for 0.5 hour.
- 9) Drain mixed base solution at the bottom or take it from handhold at the cover of the preparation tank to cross-check, solution should be clear.
- 10) Check mixed base solution for pH and density vs. temperature using the pH meter, the density meter and the thermocouple, respectively to make sure they are in accepted range according to table-2^D.

Remarks

 $^{\rm A}$ Undissolved Na $_{\rm 2}$ CO $_{\rm 3}$ may cause solution properties off-spec such as a drop in pH. An increase in mixing time and re-sampling of based solution properties are recommended.

^B Table-1: control value for Na₂CO₃ solution

Na ₂ CO ₃ solution temperature (°C)	рН	Density (kg/m³)
20		
25 (preferred)		
30		

- ^C During mixing, exothermic reaction where heat is liberated.
- ^D Table-2: control value for mixed base solution

Mixed base solution temperature (°C)	рН	Density (kg/m³)
20		
25 (preferred)		
30		

Large scale manufacturing: Success and Lessons Learned Technology transfer - Preparation for basic solution and metal precursors (Ex.)

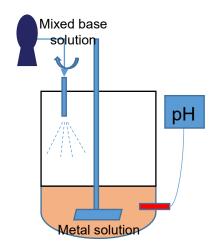
II. Mixed metal solution

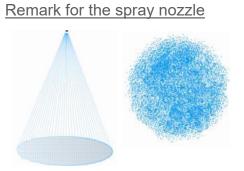
- 1) Weigh amount of each metal salt (solid pellet) composition according to synthesis recipe [RM-3 = 1,284 kg, RM-4 = 1,879 kg, RM-5 = 2,979 kg] +1 kg accuracy each.
- 2) Fill the mixing vessel with RO water until reach volume according to synthesis recipe [6,713 L].
- 3) Start an agitator of the mixing tank gently to maintain continuous mixing.
- 4) Gently pour metals salts to the mixing tank.
- 5) Keep stirring for at least 1 hour to ensure complete dissolution of metal salts^E.
- 6) Drain mixed metal solution at the bottom or take it from handhold at the cover of the mixing tank to verify complete dissolution of the solids, solution should be clear.
- 7) Check mixed metal solution for pH and density vs. temperature using the pH meter, the density meter, and the thermocouple to make sure they are in accepted range according to table-3^F.

Remarks

^E Undissolved metal salts may cause solution properties off-spec such as a drop in pH. An increase in mixing time and re-sampling of mixed metal solution properties are recommended.

F Table-3: control value for mixed metal solution

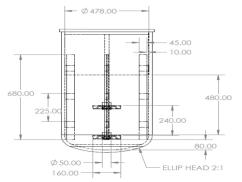

Mixed metal solution temperature (°C)	рН	Density (kg/m³)
20		
25 (preferred)		
30		

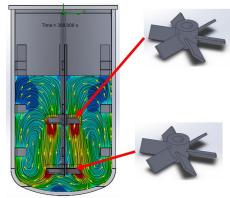

Technology transfer - Critical Process Step to make the crystal (Ex.)

Chemicals

Equipment

Process control

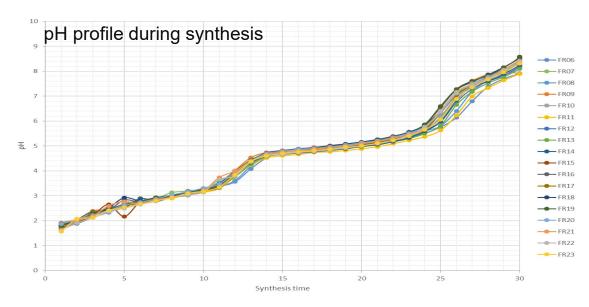




Full cone spray pattern

- 1) Feed all mixed metal solution from the mixing tank to an aging reactor to fill up heel volume.
- 2) Start agitator of the aging reactor at P/V = 1.0392 kW/m³ to maintain good mixing efficiency.
- 3) Start monitoring and recording pH value continuously.
- 4) Feed mixed base solution from the mixing tank via the inlet spray nozzle to the aging reactor via the feeding pump within 1-0.5 hours (feed flow rate around 9-18 m³/h) while stirring. Record feed rate of the feeding pump in process record. Final pH value should be around 8.5 +0.2.
- 5) Stir for 0.5 hour then record pH value in process record.
- 6) Add slowly base solution 50 wt.% from base solution tank to adjust pH of the slurry to 10 ±0.2 under continuous stirring.
- 7) Stir for 0.5 hour then record pH value.
- 8) Remove pH probe and seal the reactor.
- 9) Start heating the reactor to final aging temperature ±5°C accuracy according to synthesis recipe [140°C] with a heating ramp rate of not more than 1.4°C/min; record temperature profile and record slurry temperature while continuously stirring the slurry.
- 10) Aging the slurry as defined according to synthesis recipe [4 hours].
- 11) Cool down slurry below to 80-50°C for further processing.

Remarks for the aging reactor


 Slurry pressure while aging at 140°C is around 4.65 kg/cm²

- Geometry of the baffled reactor with 6-blade turbine impeller with two levels (Total Liquid Volume = 101.3L)
- As crystal slurry requires well-mixing during the synthesis and aging step. The multiple-stage turbine impeller for instance 6-blade turbine impeller with two levels with a baffled vessel is suggested to provide well-mixing of slurry in the aging reactor. To confirm well-mixing inside the reactor, computer fluid dynamic such as FLUENT or SOLID WORK flow simulation should be carried out to investigate internal mixing profile and behaviors.
- The co-precipitation is done in the pressure vessel with the twolevels impeller and 4 baffle tank.
 The 6-piched blade turbine was selected for preparation of well mixing of slurry in the reactor.

Large scale manufacturing: Success and Lessons Learned Technology transfer - Critical Process Step to make the crystal (Ex.)

pH slowly increase from pH=1 then gradually increase to pH=3 after mixed metal solution is added. The pH of the slurry then showed two significant step ups: The first one is a step during pH reaches 3. The pH will suddenly jump from pH=3 to pH=5 then it remains stable before going through another abrupt elevation at pH=6. The final pH would be pH=9 after everything is mixed together and then would be adjusted to pH = 10 using NaOH solution 50 wt%.

Remark for the critical item

pH profile during synthesis is the crucial step to be successfully produce HFZ2 seed material. The profile of pH can be used as an indicator for guidance of synthesis step. Missing of pH profile during synthesis may be caused by failed quality specifications of raw materials during preparation step, missing of base solution, or base solution feed flow rate. If pH profile is not in accordance with the suggested profile mentioned above, it's recommended to stop synthesis step to re-assure qualities of raw materials including flow rate of calibration curve for the feeding pump.

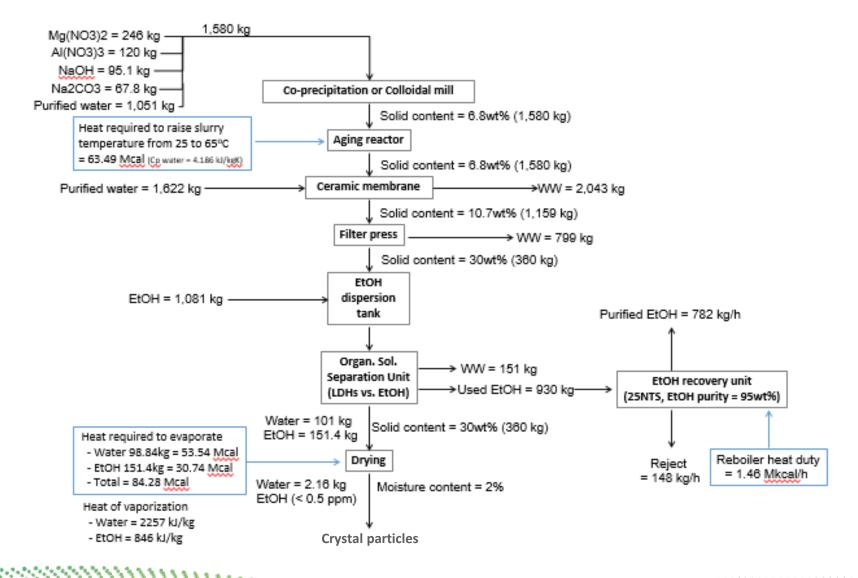

	SCG LDH	Production		oription and Con	trol Proces	Parameters Data Record	Sheet		Additional	Request:		
	Data	Record Sheet	Batch number			Record			T			
			Date			Time			T			
	_		Agitator speed	Temperature	Time	Control Process	Record	Data			eample	
no	Proce	ess	(RPM)	(° C)	(hr)	Parameters	Process parameters	Date	Time	Sample Lable	volume (mL)	Remark
1	Raw material pre	paration		RT	-							ı
2	Feeding + Homog	geneity										
	Zn(NO3)2.6H2O Mg(NO3)2.6H2O Al(NO3)3.9H2O NaOH Na2CO3 NaOH (for pH adjus	metal solution	450	RT	30 min							
3	pH Adjust + Hom		450	RT	10 min	pH _{final} = 9 pH _{after adjust} = 10	pH _{final} = pH _{after adjust} =					
	Hydrothermal (ag Heating rate = 1.4 Heating time = 100	C/min	450	140	4 hr (+100 min for raising temp)	Heating time = 100 min	Heating time = Level in reactor =					
5	Cooling down rea		450	<50	1 hr		pH _{after aging} =					
6	CRM washing (DI washing)		-	RT	3 hr	conductivity _{permeate} < 600 uS/cm Volumestury = 80-80 L VolumeCIP = 20-40 L Total volume _{hery scip} = 95 L Temp 7a Solid = 110 C	conductivitypermeate = %solid content_barry = weight_barry (kg) =					
7	Filter press		-	RT	3 hr		%solid content = Total wet cake (kg) = Pressure =					
8	Wet surface treat	ment	350	80	1 hr (+100 min for raising temp)	Slurry volume = 95 L Temp _{sturry} = 80	Amount of water (kg) = Total slurry volume (L) = Temp _{skery} =					
	Prepare NaST 5%	6 Liquid	-	80	-	Completely dissolved						
9	Cooling down rea	actor	-	RT	1 hr							
10	Filter press		-	RT	3 hr	%solid content =	Total wet cake (kg) = Pressure =					1
11	Washing		-	RT	-	conductivity _{permeate} <80 uS/cm	conductivity _{permeate} =					
12	Oven dry		-	110	-							1
13	Centrifugal mill		-	RT		sieve = 80 um RPM = 10.000						
12	Oven dry		-	150	-	%moisture content < 3%	%moisture content =					
om	ment :					-						

Table-4: process record datasheet

Table-4 above is process record datasheet where process condition and parameters are collected to control final product such as RPM, temperature and time. Also, the criteria which needed to be considered to make decision whether slurry could be processed to the next steps.

Global H&M balance

Global H&M balance and cost structure

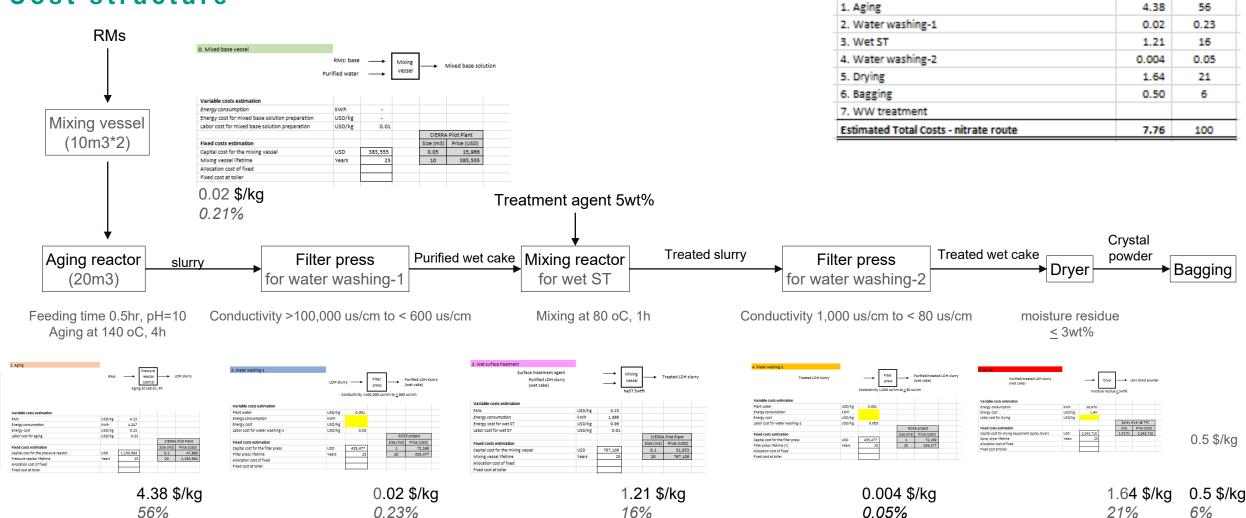
• Be 3MgB CB3 concluents • of all entro at 1880	373	1386.74 4.33	nalifici ilees	Name of the last
- Cook lat-lat the poor 3x3 methor memory pet with 18x3 - Coo 3x1at-lat the poor 3x3 methor memory pet with 8x3		7.8 1		Super-section
- [Trapolorate] [386] - [Trapolorate] [386] - [Trapolorate] [386] - [Trapolorate] [486] - [Trapolorate] [486] - [Trapolorate] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486] [486] - [486] [486]	383 473 373 373 383 473	3386.84 4.33 4.18 4.49 383.37 388.71	nalitati nalitati nalitati nalitati nalitati	Dyna
	ļ	 		Control, largest of Chesting, Johnson
- iFid (88 ii) meliesų simot slu (385) - iFid (88 ii) meliesų simot (si (1385)	383 483	383.37 348.43	evalee.el evalee.el	De sudder institre
· · F · d · · d · · · d · · · · · · · ·	383	4.38	DAILE:EI	And married

Accession of the second	70 170 10		717 217 88	7 174 178 81
8 6 11 18 16 16 17 8 18 18 18 18 18 18 18	38,678.68 48.766.49	178,383.39 383,833.44	713,413.88 818.339.77	7,124,128.81 8.183.397.73
	•	-	•	
Tele B course course the spage	76,437 31		438	4,347
			725	*,***
Tale B arguest connect the equip	73,448	11.21	43.44	439.86
enclass)	2.18	10.70	43.44	434.86
<u>Immilian</u>				
- Contropies of post actor to other Bessall pp.	8.78	3.78	18.88	188.88
End (1888)	0.01	1.11	8.54	3.37
<u> Innerton</u>				
Material SEX M [1]	13.38	84.68	337.44	F 3883.18
1a1 · a1 188 [1]]	1.68	41.78	166.89	1783.17
Intentoff	3.71	17.41	21.48	788.93
Polot col III [1]	8.68 8.37	41.78 1.39	166.84 8.18	1783.17
Probatendo (1) Probatengo (1)	3.44	1,34 h.h	## hh.34	64.14 646.24
Min house and minute [X]	3177			3
Topoth lot got [V]	133,438	3,836,384	10,073,400	188,485,848
■ opert transports with [P]	1,841	8,364	31,000	228,488
■ closed to d [M]	8,363	48,484	161,111	1,644,888
<u> Ուղում</u> և աղամյան (Մ <u>Մ</u>	116	E63	3,344	33,898
Tele 8	145	718	3,888	27,778
End 1000	14.42	22.24	388.48	3833.83
According	14142	24.44	200.40	3433.43
	CE 8 8 13 8 1 / 4 1 1	CC 8 8 8 13 8 1 ₁ 2 1 ₁	CCB 21 [26 1] 41]	CC0 100 [103 1 ₁ 21]
Tele 2 represt recent of easy [1	13.44	64.43		3,734.46
T-1- 8,11 -1, [8	48,848		883,368	
End (888)				
Tele 8 11 Tele 8 12	4.48 18,383	31.64 73.836	86.39 888888	411_6 8
	,	**,***		
End (BBB)	88.31	436.66	1781.01	17893.66
<u> Accounting</u>				
Bording of 130 cC, 41 (M)	394,819.86			
Bod on the East Indi				
Tele 8 eggent conel 10: 1:: 1: Tele 8 eggent conel 10: 1:: 1:	478	2,398	7,181	76,343
T-1- E III- I I				
Col (CCC)	40.00	333.38	936.39	9743.31
<u> Innerton</u>				
#[#] (1 ## (C, 41 D)	38,336.84	136,684.19	886,736.78	8,867,367.78
Bod on 18 CALIPY	38,369.47	181,347.36	488,389.43	4,883,844.33
T-!- !!! !!!	40,000	======	713,136	
Tele 8 especial constitution of the constituti	13 43,336	316,133	383 8888888	3,834
-	=	-		
End (BBB)	1.38	6.41	38.68	286.48

Global H&M balance and cost structure

VARIABLE COSTS								
Raw materials	Quantity (kg)	Cost per Unit (high side)	Cost per Unit (low side)		Cost of RMs per kg [USD/kg]	RMs: Zn/Mg/Al	RMs: Zn/Al	% Reduction
Zn(NO3)2.6H2O	2893.12	2.46	1.22		Low side, sourcing by SCGC [USD/kg]	2.12	1.90	10.50
Mg(NO3)2.6H2O	1246.90	1.25	0.22		High side, sourcing by SCGC [USD/kg]	5.00	3.74	25.10
AI(NO3)3.9H2O	1824.24	1.28	0.68		_			
NaOH 50%w/w solution (ASTEC-2 price)	3254.46	0.54	0.54					
Na2CO3 (only one source)	515.5470632	0.40	0.40					
RO water - synthesis (ASTEC-2 price)	13875.55	0.02	0.02					
Water washing	150.00	0.02	0.02					1
Product (kg)	1752.17							
Process steps	Q required (kWh)	Q required (Btu)	Electricity cost in China	ctricity cost in USA, Geor				
Aging	4,247	14,489,691	\$ 407.66	\$ 520.62				
Drying	29,970	102,262,791	\$ 2,877.15	\$ 3,674.35				
Grinding - jet mill	2,735	9,332,027	\$ 262.55	\$ 335.30				
Grinding - impact mill	912	3,110,676	\$ 87.52	\$ 111.77				
Dry surface treatment	96,242	328,390,290	\$ 9,239.20	\$ 11,799.23				
Wet surface treatment	2,534	8,645,288	\$ 243.23	\$ 310.63				

-					_													
	VARIABLE COSTS				China				USA	China			USA					
	YARIABLE COSTS			.) Agin	q + Drying + Dry surface tr	reatm	ent + Grinding - jet m	A) Aging + Drying + D	Dry surface treatment + Grinding - jet mill		B) Aging +	Wet surface	reatment + Di	rying + Grinding - impac	t mill	B) Aging + Wet surf	ace treatment + Drying +	Grinding - impact mill
	1) Raw materials high side	\$	7.55		\$		7.30 \$		9.32				2.06 \$			254		
	2) Raw materials low side	\$	4.13	•			1.50 \$			3.32			2.00	2.00 \$				
	VARIABLE COSTS			C	hina		USA											
			ess A		Process B		Process B											
	High	\$	14.84	\$	9.6	51 :	\$ 10.18											
	Low	\$	11.43	\$	6.20	0:	\$ 6.77											



Global H&M balance and cost structure

	Electric cost in thailand is 3.17 Bath/kWh									
	Rxchange rate on Feb, 4 2020 is 31.3156 bath/\$	0.10	\$7kWh							
			8.647571502							
			Reactor size (m3)	0.1	Reactor size (m3)	0.5	Reactor size (m3)	2	Reactor size (m3)	20
E	Components	Price per kg (USD/kg) High side SCG CH sourcing	Weight (Kg)	Price (USD)						
8	Zn(NO3)2.6H2O	2.46	14.28	35.18	68.98	169.98	275.07	677.78	2893.12	7128.64
Ġ	Mq(NO3)2.6H2O	1.25	6.15	7.72	29.73	37.28	118.55	148.67	1246.90	1563.61
8	AI(NO3)3.9H2O	1.28	9.00	11.52	43,50	55.63	173.45	221.84	1824.24	2333.21
- E	NaOH 50%w/w solution (ASTEC-2 price)	0.54	16.06	8.72	77.60	42.13	309,43	168.01	3254.46	1767.03
Ĭ	Na2CO3 (only one source)	0.40	2.54	1.02	12.29	4.92	49.02	19.61	515.5470632	206.22
苔	RO water - synthesis (ASTEC-2 price)	0.02	68.48	1.08	330.85	5.23	1319.28	20.86	13875.55	219.37
8	RM total cost			65.24		315.17		1256.76		13218.08
2	RM total cost per kg product		8.65	7.54	41.78	7.54	166.59	7.54	1752.17	7.54
	0	Brian and he (HSB) had been side SCO OH associate	Reactor size (m3)	0.1	Reactor size (m3)	0.5	Reactor size (m3)	2	Reactor size (m3)	20
E	Components	Price per kg (USD/kg) Low side SCG CH sourcing	Weight (Kg)	Price (USD)						
ğ	Zn(NO3)2.6H2O	1.72	14.28	17.42	68.98	84.16	275.07	335.59	2893.12	3529.60
17	Mg(NO3)2.6H2O	0.22	6.15	1.37	29.73	6.63	118.55	26.44	1246.30	278.06
ĕ	AI(NO3)3.9H2O	0.68	9.00	6.12	43.50	29.58	173.45	117.94	1824.24	1240.49
36	NaOH 50%w/w solution (ASTEC-2 price)	0.54	16.06	8.72	77.60	42.13	309.43	168.01	3254.46	1767.03
S	Na2CO3 (only one source)	0.40	2.54	1.02	12.29	4.92	49.02	19.61	515.5470632	206.22
ĕ	RO water - synthesis (ASTEC-2 price)	0.02	68.48	1.08	330.85	5.23	1319.28	20.86	13875.55	219.37
ž	RM total cost			35.74		172.65		688.44		7240.77
ď	RM total cost per kg product		8.65	4.13	41.78	4.13	166.59	4.13	1752.17	4.13
	Components	Price per kg (USD/kg) ASTEC-2	Reactor size (m3)	0.1	Reactor size (m3)	0.5	Reactor size (m3)	2	Reactor size (m3)	20
	Components	Price per kg (Osbrkg) Asi EC-2	Weight (Kg)	Price (USD)						
N	Zn(NO3)2.6H2O	3.00	14.28	42.87	68.98	207.11	275.07	825.84	2893.12	8685.82
ĕ	Mg(NO3)2.6H2O	1.49	6.15	9.20	29.73	44.44	118.55	177.20	1246.90	1863.77
NS.	AI(NO3)3.9H2O	11.50	9.00	103.52	43.50	500.13	173.45	1994.28	1824.24	20975.01
20	NaOH 50%w/w solution	0.54	16.06	8.72	77.60	42.13	309.43	168.01	3254.46	1767.03
8	Na2CO3	0.83	2.54	2.11	12.29	10.21	49.02	40.70	515.5470632	428.11
RM	RO water - synthesis	0.02	68.48	1.08	330.85	5.23	1319.28	20.86	13875.55	219.37
	RM total cost			167.50		809.25		3226.89		33939.12
	RM total cost per kg product		8.65	19.37	41.78	19.37	166.59	19.37	1752.17	19.37

Cost structure

Estimated Total Costs

0. Mixed base/salts

USD/kg

USD/kg

0.02

7.76

96

0.21

Nitrate-route

