Digital Process Technology Sustainability and responsiveness in the Process Industries

Mayank Patel

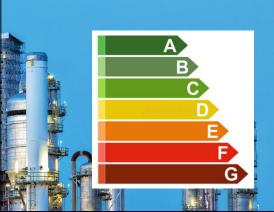
Decarbonization of Process Industry and Next-Generation Materials for Sustainability: DTSI session 23 June 2023

Humanity's #1 challenge

is climate change

The process industries are a major contributor to GHG emissions

Global direct CO₂ emissions from primary chemical production alone was nearly 1bn tonnes in 2020



Climate change & the process industries Addressing the decarbonization challenge

Emissions reduction

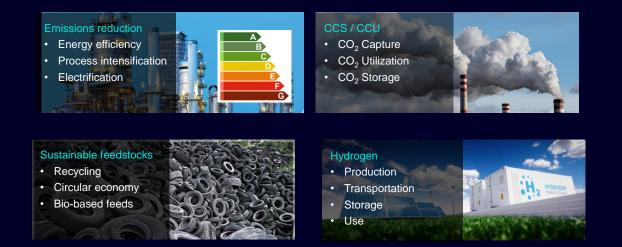
- Energy efficiency
- Process intensification
- Electrification

CCS/CCU

- CO₂ capture
- CO₂ utilization
- CO₂ storage

Sustainable feedstocks

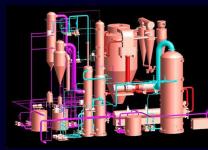
- Recycling
- Circular economy
- Bio-based feeds


Hydrogen

- Production
- Transportation
- Storage
- Use

Climate change & the process industries

Addressing the decarbonization challenge ... via digital process technologies


Multiple objectives Complex interactions

A new golden era of innovation & opportunity

R&D

Engineering Design

Plant Operations

"3 steps to a sustainable process industry": a phased approach How digital technologies help at every step

REDUCE: Improve the carbon efficiency of existing processes MITIGATE: capture CO₂, use and/or store it AVOID: Develop & deploy alternative low-carbon process routes

Digital operations applications

Operational excellence Enhanced plant efficiency Emissions reduction applications

Digital process design

Quickly analyse complexity: integration issues, operability dynamics

Digital process design

Accelerate innovation & manage risk using state-of-theart model-based techniques

Three steps to decarbonization 1. REDUCE: Improve the carbon efficiency of existing processes

There is no silver bullet for achieving net zero overnight But you can certainly improve the CO_2 footprint of existing processes within the space of months ...

... without redesign or capital expenditure.

- Digital twins of site-wide energy and utility systems can be implemented in the control room
- ...to reduce emissions on a 24/7 basis using advanced monitoring & optimization techniques
- ...tightly integrated within wider energy ecosystem

Digital Operations use cases **Reducing site utilities emissions and energy costs**

How to ensure minimum emissions and energy costs hour-by-hour

gPROMS Utilities operations decision support

- Site-wide utilities optimizer implemented in control room
- Operators see current 'profits gap' and actions to reduce it
- Hour-by-hour decision support
- Instant optimal recovery to upsets and disturbances

Potential 2-10% reduction in emissions & cost

- Reduced emissions every day
- Reduced energy cost every day
- Cleaner, greener plant with more flexible operation
- Better-informed, empowered operators

gPROMS Utilities gives us significant base-line savings on our refinery site.

Galp Energia, Portugal.

SIEMENS

Unrestricted | © Siemens | DI PA PSE | 2022-10-04

Three steps to decarbonization 2. MITIGATE: Capture CO₂, use and/or store it

Carbon capture is a key technology – proven and available now – in the transition to a decarbonized economy. It may also be one of few practical options for hard-to-decarbonize sectors such as steel and cement.

- Carbon capture needs to be tightly integrated with main processing systems
- Digital process twins help minimize the energy penalty and ensure operability and controllability of the entire carbon chain
- Digital technology is essential for development of new concepts for capture (e.g. Direct Air Capture) and storage (e.g. mineralization)

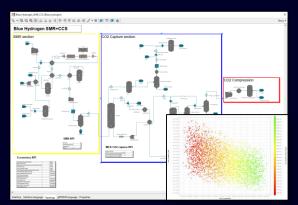
gPROMS Process: digital design and digital operation for process systems with carbon capture, utilization and storage

Map out **system interactions**, design **control systems** and **operating procedures**, design for **dynamic operation**

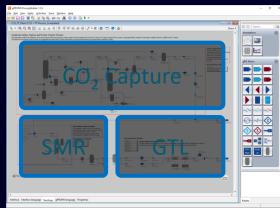
Integrated environment for

Design: optimize heat integration, explore alternatives, predict transient response **Operation**: process digital twin for on-line decision support, real-time optimization **Scope**: detailed predictive models for power generation, capture unit, compression, transportation and storage + many more other process units

Key projects


Optimizing start-up and shutdown of gas treatment plants [Shell] CCS chain and network studies [Energy Technologies Institute]

Major benefits include


Better design, increased confidence when scaling up Better heat integration → reduced energy penalty Faster startup/shutdown, better response to process disturbance

Whole-chain capture process model covering power generation, CO₂ capture, compression, transportation and storage

Blue hydrogen process model including SMR unit, CO2 capture unit and heat integration, used for sensitivity analsyis

Carbon capture and utilization process model covering CO₂ capture, methane reforming and hydrocarbon (C5+) synthesis

Three steps to decarbonization 3. AVOID: Develop alternative low-carbon process routes

The hydrogen economy is driving much new process development.

However, getting new equipment & processes to market rapidly and reliably poses many challenges – particularly if they need to be designed for variable feed rates. Digital process development is helping reduce time-to-market and cost by

- ...enabling rapid and informed evaluation of alternatives
- ...quantifying uncertainty and managing risk in innovation
- ...maximizing effectiveness & efficiency of experimental R&D programmes

Digital Design use cases **Protium: helping enable Zero-Emissions Flight (ZEF)**

How to bring a new, innovative process to market rapidly

- System for **rapid hydrogen refuelling** of aircraft
- Digital twin technology used to accelerate the development, design, testing
- Refuelling system model used to
 - explore the decision space and optimize system design
- simulate and optimize real-world performance
- Contributes towards the UK government 2050 **net zero emissions target**.

Faster time-to-market with optimized design

- Explore decision space rapidly
- Quantify the effects of design changes accurately
- Understand system interactions
- Reducing need for expensive prototyping
- Minimize technology risk

The digital twin approach to designing refuelling systems increases confidence and understanding in the capabilities of emerging hydrogen technology DR JEN BAXTER, DIRECTOR OF INNOVATION, PROTIUM

Digital Design use cases Everfuel: developing large-scale electrolysis-based hydrogen production & storage

How to rapidly scale up of new hydrogen storage process

gPROMS Process decision support for rapid decision

- HySynergy large-scale electrolysis hydrogen production & storage
- Digital twin design tool captures knowledge of inherently complex chemical and physical processes including electrochemical cell reactors
- Used to scale-up from initial 20 MW to full-scale 300 MW production size
- Supports decision-making in all stages of the project delivery and plant optimization activities

Faster time to optimal system design

- Systematically explore complex decision space
- Establish economically optimal design
- Rapidly establish viability of design choices and
- Quantify risk associated with design & operating decisions

We believe that the unmatched capabilities of gPROMS in process modelling, validation and optimization will help us secure the future of zero-emission mobility".

TOGETHER FOR SUSTAINABILITY (TfS) PARTNERSHIP

Activating carbon footprint transparency in the Chemical Industry

Customer Challenge

Tracking carbon emission data is difficult due to silos between different players along the value chain. This creates a challenge for product carbon footprint (PCF) and scope 3 reporting.

Solution

Partner with TfS, consisting of 47 international companies, to demonstrate the scalability of PCF data exchange across the chemical industry using SiGREEN.

- Provide learnings on PCF data exchange in chemical industry
- Deploy SiGREEN to all TfS members
- Exchange PCF data securely between partners in the chemical industry supply chain

Customer Benefit

- Trustworthy and secure PCF data exchange in supply chain
- Standardized PCF guideline throughout chemical industry
- Easy identification for carbon reduction measures
- Acceleration of decarbonization in the chemical industry

but neither the only, Humanity's #1 challenge nor the most immediate one

is climate change

Climate

Health

Energy security

Food

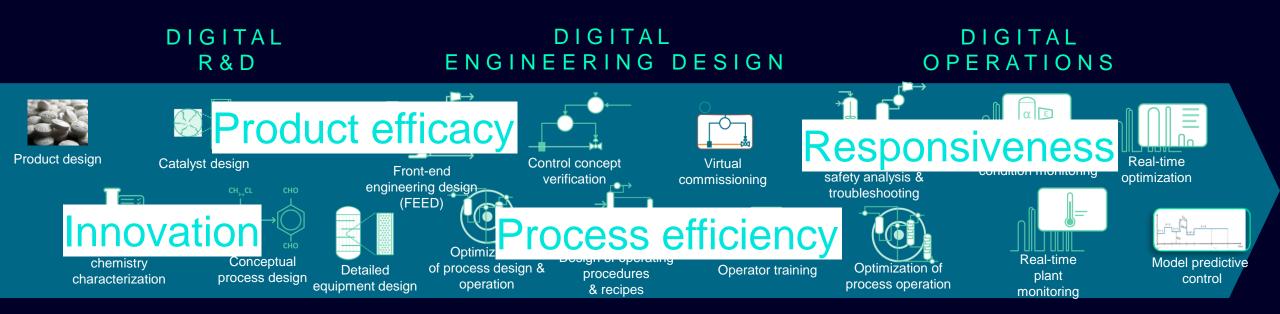
Page 17 Unrestricted | © Siemens 2023 | Siemens Digital Indus

Digital Process Technologies: a key part of the solution

Innovation

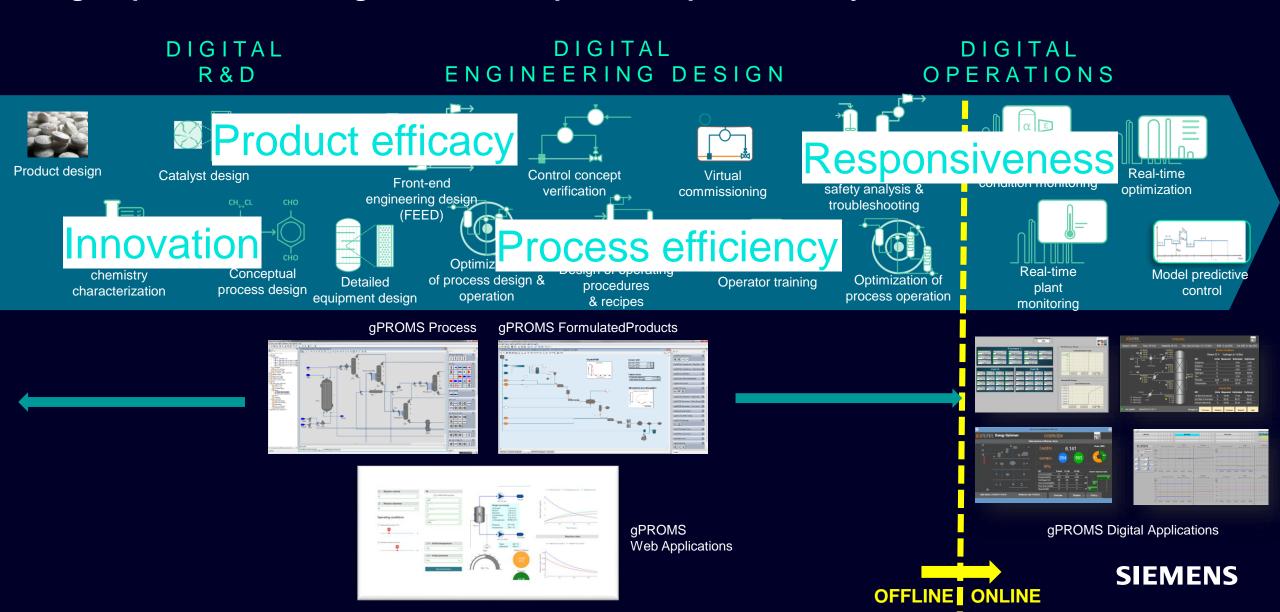
Product efficacy

Process efficiency


Responsiveness

dobe Stock | #25374990

Digital process technologies across the product & process lifecycle


Deep process knowledge

- captured in the form of validated models
- leveraged across the lifecycle

Significant value

- delivered at all stages of the lifecycle
- ...by combining models with sophisticated mathematics & computer science SIEMENS

Digital process technologies across the product & process lifecycle

Thank you

m.patel@siemens.com

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software