

enfourtech

A Novel Revamp Technology to Maximize Fired Heater Capacity and Run-Length while Cutting CO₂ and NOx Emissions

Erwin Platvoet

AN EMISSIONS CHALLENGE

Every year, fired heaters in refineries emit

400 – 600 million tons of CO₂ but also 0.25 – 0.35 million tons of NOx

AN EMISSIONS CHALLENGE

CO₂ can be reduced today by increasing efficiency.

- Most heaters operate at 80 90% efficiency
- Air preheat can increase efficiency > 95%

This may increase NOx by 50 – 200%.

AN EMISSIONS CHALLENGE

CO₂ can be reduced by changing fuel from hydrocarbons to hydrogen, or ammonia.

Needs study:

- Burner performance
- Heater performance
- Material compatibility
- NOx emissions

CHALLENGE MET? – INCREASE HYDROGEN FIRING

- The ideal solution; combine
 - 1. H₂ firing to minimize CO₂
 - 2. Air preheat to maximize efficiency and minimize H₂ consumption
- Problem: NOx limit is easily surpassed.

CHALLENGE MET?

- We need a technology that can
 - Improve performance of existing heaters
 - Increase firebox efficiency
 - Reduce or maintain tube metal temperatures
 - Reduce or maintain NOx
 - Function independent of the type of fuel
 - Increase heater capacity

Flameless combustion has been developed 20 – 30 years ago for these reasons.

THE PROBLEMS WITH FLAMES

Flames cause problems. Flameless combustion solves them:

Uneven tube heating due to shadowing

Uneven heating due to bad flame shape / heat flux profile

Afterburning, flame interactions, high emissions

A CHALLENGE - FLAMELESS FIRED HEATERS

- But: true flameless combustion requires high temperature and uniform oxygen/fuel mixing
 - Fired heaters have large gradients of temperature, fuel and O₂
 - True flameless is difficult;
 A hybrid approach is needed.

XCEEDTM DISPERSED COMBUSTION

- Conventional burners remain in place and supply all combustion air
- Once the heater is hot enough, 50 100% of the fuel is diverted to Xceed nozzles that are distributed over the heater wall
- Fuel from these nozzles is mixed with flue gas and oxidizes without flame inside the firebox

XCEED MODULES

- Xceed modules are installed in the heater wall
- 1 4 nozzles for each floor burner
- Refractory maintains casing temperature
- Can be turned off and left in place
- Thermal shock and fouling resistant fuel injector

DISPERSED COMBUSTION

- The tile uses a combination of venturi and Coanda effects to maximize flue gas entrainment
- Fuel is diluted in a 40:1 ratio
- Creates a planar high-velocity jet
- The dilution and velocity make it impossible to establish a flame

internal flue gas recirculation

XCEED OPERATION

Once the firebox is heated above 700 – 750°C

- Xceed nozzles are turned on
- Floor burners operate at 20 50% duty but with 100 200% excess air → compact and cool flames
- Xceed fuel oxidizes slowly, without flame, while heating the backside of the tubes → more uniform heat distribution
- Any unreacted fuel will travel back into the main burner flame and complete the oxidation

TYPICAL XCEED RESULTS

- NOx reduction of 50 80%
 - Firebox temperature drops 50 80°C
 - Firebox radiant efficiency increase of ~6-8%
 - Peak radiant tube wall temperatures drop 10 30°C
 - Flame height reduction ~50%
 - No CO emissions

CASE STUDY

VC Crude heater suffered from several issues:

- Tube degradation caused by creep
- Short run-lengths between decokes
 - Due to high radiant tube metal temperatures the heater had to be shut down for cleaning every three to nine months
- Capacity constraints
 - Limitations on the heater firing rate was frequently the main refinery bottleneck
- Convection fouling/degradation

PROJECT GOALS

- Eliminate flame impingement / correct flame cloud issue
- Improve fuel efficiency from 78% to >90%
- Increase capacity by 20-30%
- Reduce coking
- Maintain NOx emissions

CASE STUDY

Phase 1 Revamp:

- Reduce burner quantity from 15 to 5
- New ULN burners
- Add a balanced draft, air preheat system
- Phase 2: Replace convection section
- Phase 3: Add Xceed
 - Long flames due to 100% butane firing

XCEED REVAMP

- Twenty Xceed nozzles installed on two elevations
- Four modules per floor burner, 2.2 MW duty / nozzle
- No changes to the heater control and safety system
- Passed EN 746-2 conformity check

XCEED REVAMP

Three-way valve between each burner and Xceed header

Fuel control

Manifold feeds four Xceed fuel lines

Xceed header

FIELD RESULTS

Floor burner flame

Stack sample: 18.6 ppm NOx 0 ppm CO

	Natural Draft Base	Post APH	Xceed
	case	Revamp	
Firing rate (MW)	68	76	79
Absorbed duty (MW)	55	69	73 (+33%)
Combustion air temperature (°C)	15	298	290
NOx (ppm)	< 25 ppm	36	18 (-50%)
Peak radiant skin temperature (°C)	461*	562	530
Arch temperature (°C)	801	945	902
Stack temperature (°C)	400	155	153
Fuel efficiency (%)	81	91	92 (+11%)

*Prior TMT location not at real peak

FIELD RESULTS

- In operation since October 2022
 - Arch temperature reduced 43°C
 - Peak wall temperature decreased by 32°C
 - Saved 22,500 tpy CO₂
 - Saved 26 tpy NOx
 - Flame height reduced from 18 to 8 m on 92% butane fuel
 - Zero (0) ppm CO
 - Eliminated radiant fouling almost completely

CONCLUSIONS

- Xceed Dispersed Combustion can be used to
 - Minimize CO₂ emissions,
 - And minimize fuel consumption,
 - And minimize NOx emissions, all at the same time
 - It requires minimal changes to the existing heater control and safety system
 - It improves heater reliability by reducing fouling
 - Additional fuel savings
 - Less downtime for maintenance

CONCLUSIONS

- Dispersed combustion can be retrofitted to many existing heaters; cylindrical, box or cabin type
 - Integrates seamlessly with any burner technology
 - Can be used to fire *any* gas fuel: hydrocarbons, hydrogen, ammonia
 - Can be used in combination with electric elements to further reduce carbon footprint :
 - *e*-Xceed is in development for the next phase!

THANK YOU

