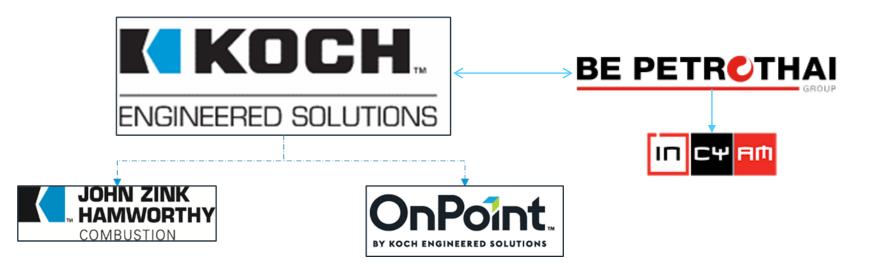
Leveraging Connected Digital and Analytical Tools to Address Furnace-Specific Combustion Inefficiencies at GC Olefin Plant

Eric Gebhard – Koch Engineered Solutions

Karnchana Kongsri - PTTGC

Legal Notice

- The information contained in this presentation has been prepared for information purposes only. You should conduct your own investigation and analysis of Koch Industries, Inc., Koch Holdings, LLC, Koch Engineered Solutions and/or their respective affiliates (each a, "Koch company" and collectively, the "Koch companies") and the information set forth in this presentation. No Koch company makes any representation or warranty as to the accuracy or completeness of the information in this presentation and shall have no liability for any other representations or warranties (express or implied) contained in, or for any omissions from, this presentation.
- Without limiting the foregoing, this presentation includes certain statements, estimates and projections with respect to the anticipated future performance of one or more Koch companies. Such statements, estimates and projections reflect various assumptions concerning anticipated results, which may or may not prove to be correct. No representations are made as to the accuracy of such statements, estimates or projections, and the Koch companies have no obligation to update any such information.
- You agree that all of the information contained in or divulged during the course of this presentation is confidential and that you will not disclose such information to any third party and will use such information only for your internal review purposes.


Company Overview

OnPoint Digital Solutions, LLC (a Koch Engineered Solutions company)

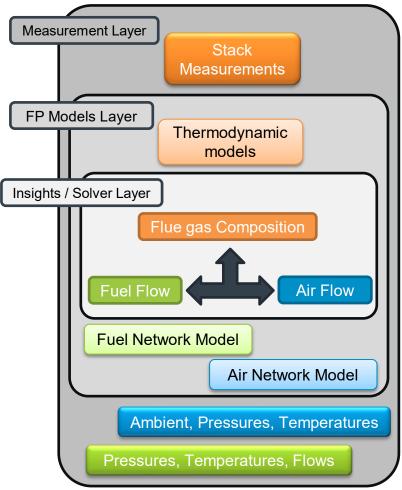
- Digital Solutions provider for large range of industries
- Refining, Petrochemical, Steel, Power Generation, Glass, Paper, etc.
- Based in Wichita, Kansas USA

EMBER™ (an OnPoint Digital Solutions service)

- Developed in collaboration with John Zink
- Over 35 active subscriptions around the world. Over \$10MM expected benefit.

GC OLE 2/1 Olefins Plant

- 11x furnaces
- 3x different furnace designs
- EMBER deployed on all furnaces in December 2022 after successful trial on single furnace.



EMBER

Algorithms & analytics developed by industry leading combustion experts at John Zink

- A digital solution that leverages existing furnace instrumentation and combustion 'digital twin' to provide proprietary process burner combustion optimization and monitoring insights.
- EMBER leverages proprietary First Principle (FP) thermodynamic models and computational fluid dynamics (CFD) from John Zink Hamworthy Combustion.
- Data connection is established with site historian to gather model inputs from existing instrumentation on a scheduled basis.
- EMBER solves for the appropriate air register setting for each burner based on the desired, or required, stoichiometry (local and global) to reach furnace performance goals.

EMBER Services Approach

- Model outputs can be accessed at anytime directly by site personnel through EMBER web portal.
- Routine asset specific tuning reports, created by EMBER engineers, provide furnace operational insights and recommendations
 - Collaboration to overcome asset specific pain points through combustion tuning
 - Furnace KPI tracking including value realized from combustion tuning
 - Guided prioritization of work based on value
- Direct collaboration and support from EMBER and John Zink engineers on a weekly basis
 - Reduce tuning time and institutionalize combustion knowledge
 - Value realization reporting

© 2023 Koch Engineered Solutions. All rights reserved. | CONFIDENTIAL

KIKOCH.

Fleet Wide Monitoring

EMBER Multi-Asset Prioritization Report Report data as of 6/2/2022															
Summai	ry Score	es			А	В	с								Site Summary
								G					Offline		mlb/hr
			Fur	rnaces					н	, i i i		D	E	F	Total Feed 183
				Rank	3	1	2	4	7	6	5	9	8	10	Monthly plan 300
M	ax scores		Prioritization S	Scores	#	#	#	#	#	#	#	0	0	0	7 of 10 furnaces currently online
	ax scores			Value	84	250	179	35	10	20	30	0	0	0	, or to tanaces carrently chime
Value Ease of Tun	aina	250 100	Ease	of Tuning	100	67	54	55	40	45	50	73	57	90	
Process Un		75	Process U	niformity	61	51	75	50	35	40	45	15	15	15	Footnotes
Safety and		75	Safety/Enviro		0	39	31	44	20	35	40	12	15	-1	1000000
Est. Shut De	own	75													*Escalated if greater than permit limit
			Estimated Sh	iut Down	50	62	60	82	10	40	80	34	100	2	
														**Target Excess 02 is 2.25%	
Key Per	forman	ce In	dicators			_	-	-				-	_	-	
	_				Α	В	С	G	н		J	D	E	F	***Radiant absorbed duty / desired
			Excess O2**	vol%	2.6	7.0	3.6	2.5	2.5	2.5	2.5	2.3	2.3	2.3	product throughout
	"Driving		Total Feed	mib/hr	53	29	45	49	49	49	49	0	0	8	
	KPI's"		Heat Release (flow based)		226	134	191	231	231	231	231	47	57	2	****Assumes historic creep rate from
	"Weight Pe	r	Energy Intensity*** COT		2.91 1589	4.08 1576	3.50 1587	3.77 1591	3.77 1591	3.77 1591	3.77 1591	0.00 1528	0.00 1527	0.00 1524	current max RO and buffer remaining
Value	Category"		Arch Temp		2165	1836	2008	2150	2150	2150	2150	1459	1527	2497	until 0.80 EOR conditions
			Stack Temp		646	520	515	577	577	577	577	425	420	208	
			Venturi Pressure STDEV	psig	1.94	0.49	4.72	0.84	0.10	0.10	0.10	0.00	0.00	0.00	Note about ease of tuning number
			FG Reduction (opportunity cost)	\$/yr	\$58,603	\$519,437	\$169,896	\$34,019	\$30,000	\$20,000	\$10,000	\$0	\$0	\$0	
		Run	Length Extension (opportunity cost)	\$/yr	\$121,337	\$16,273	\$213,846	\$40,436	\$15,000	\$10,000	\$9,000	\$0	\$0	\$0	
Ease of			Total dampers that need changes	*	86	144	168	168	50	20	20	120	168	104	
Tuning			Draft	inH2O	0.58	0.61	0.45	0.49	0.70	0.60	0.68	0.50	0.53	0.72	
			COT STDEV	F	22	22	15	13	36	3	39	0	0	0	
Process			XOT STDEV	F	15	23	5	575	18	66	14	0	0	0	Legend
Uniformity			Venturi Pressure STDEV	psig	1.94	0.49	4.72	0.84	4.6	1.4	6.2	0	0	0	
			Overall Burner Tip Health	ratio	0.89	0.78	0.83	0.86	5.8	3.5	2.2	100	100	100	If using different colors throughout the
Safety and			Stack CO	ppm		67	63	79	0	0	0	332	332	171	KPI table and summary scores it might
Environmental			Stack Nox		82	57	37	63	41	49	-5	37	37	60	be good to have a legend here (red,
			Max Venturi RO	ratio	0.57	0.52	0.54	0.49	0.63	0.77	0.68	0.66	0.50	0.79	green, grey, etc.)
Estimated			Days Online		25	0.52	2	3	34	34	22	0.00	0.50	0	
Shut Down			Est. Days Remaining****		25	31	30	41	7	15	22	17	50	1	

Recomm	endations					
A EMB	🖙 Ethylene Furn	ace B		as of 12/05/2022	- 11:00 AM CDT	
-	Action Required					
	ommendations					
ar 12 8 31 4	EMBER Ethylene F	urnace C		as of 12,	/05/2022 - 11:00	
4	Action Required					
A P. D	Recommendations	Stack Excess	1.0%	ARCH DRAFT (inH, O 030 040 030 040 040 040 040 040 040 040 040 040 04	-Fayet	
-1 8 10 10	Recommendation Notes 1) Follow recommendations shown for the wall burness, starting with R4 and R3, then R2 and R1 (psusing between each set of two	SUMMARIZED BURNER DAMPER RE The spx projected exces	COMMENDATIONS s 02/imm these recommendations is 1.5%		ecommender Damper Settings Domern Settings	
	rows). 2)Follow recommendations shown for the floor burners.	NI	7257557	8.0 8.0 8.0		
	 Pause and monitor. Adjust ID fan to maintain the target draft of 0.351-0.401. 	NA 6.5 7.5 N3 6.5 7.5 N2 6.5	8.0 2/3 8.0 7/5 8.0	8.0 7.5 8.0 7.5 8.0		
		7.5 81 6.0 7.9 4.0	75 8.0 70 8.0	7.5 8.0 7.0 8.0		
	Additional Notes Purpose for this tuning: Reduce excess O2, Maintain low COT deviation.	5.9 Zone 1 Dume (9/5) 1 2 Dui 1 2	2016 2 3 4 5 6 3 4 5 6	1.0 Zonc 3 7 8 9 7 8 9 7 8 9	10 11 10 11	
Ke IC	H burner dansers are different in the field than what are currently shown, consult with Enhor team prior to executing the recommended thomges above. Avags remember to open burners that are too closed. Fist and there if excess air allows) close burners that are too in open.		50 M M M			
ж. 4.5 4.5 4.5 4.5 4.5 4.5 4.5 1.291/2 1.1 1.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	I	005 005 005 005 005 005 005 005 005	- 14 - 90 - 94	972 - C31 - 972	60 64	
80.5 80.0 9.5 9.0	Key Performance Indica	tors				
43 45 100	NUMBER VISIONI DI ILIA COMMI 10.50 9.	20	Heat Rok Decer	a D ₂ with 2.7% NDx per 54 0 per 6 fare 1 ⁻¹ 452 rsg 1 ⁻¹ 1.000 well 7 7 atta sets 0.73 atta sets 0.73 atta sets 41 rsg 1.900	RaterRan 2016 3.7% 3.7% 43 43 43 43 43 43 43 43 43 43 59	
Ц	9999000 9993000 10/13/00 10/13/000 11/13/2200	11,700002 31,714002 31750/002	Burners Of	lina y 7		

ENGINEERED SOLUTIONS

© 2023 Koch Engineered Solutions. All rights reserved. | CONFIDENTIAL

ENGINEERED SOLUTIONS

Dynamic Optimization

Drive burner/furnace operation closer to the "As Design" state

- Maintain balanced air flow through direct burner-by-burner recommendations with proven ability to reduce hotspots
- Achieve optimized heat and oxygen uniformity for reduced TMT and COT deviation leading to:
 - Increased yields
 - Improved furnace thermal efficiency and reduced fuel consumption
 - Increased run lengths by over 30%
 - Reduce carbon impact of fired heaters
- Active monitoring of fireside stoichiometric conditions with timely qualitative feedback on needed burner air adjustments
 - Fuel composition changes (high H₂ firing)
 - Optimize fuel usage and emissions
 - Reduce tuning time

Results

Operational Data

	сот	Average	°C)		Tota	al Feed (kg/	hr)	
Furnace	Baseline	EMBER	Delta	Furnace	Baseline	EMBER	Delta	
А	835	834	-1	Α	16,866	16,353	-512	
В	835	836	1	В	17,101	16,409	-692	
с	832	828	-4	С	16,987	16,578	-409	
D	830	828	-1	D	19,108	18,896	-213	
E	834	832	-2	E	18,598	18,579	-20	
F	834	834	0	F	18,303	17,121	-1182	
G	834	826	-8	G	17,189	16,680	-509	
н	833	825	-8	н	16,752	17,063	311	
I	828	831	4	I	16,670	16,954	284	
J	835	830	-5	J	16,349	16,900	551	
к	832	828	-4	К	17,435	16,667	-768	
Fleet Average	833	830	-3	Fleet Average	17,396	17,109	-287	
			-0.3%				-1.7%	
	Gas Fee	d (% of to	al Feed)		Steam Flow (kg/hr)			
Furnace	Baseline	EMBER	Delta	Furnace	Baseline	EMBER	Delta	
Α	0%	0%	0%	А	7,839	7,530	-310	
В	0%	0%	0%	В	7,937	8,166	229	
С	90%	41%	-49%	С	6,288	6,646	358	
-	92%	96%	4%	D	6,002	6,038	36	
D	JZ/0	5070	470	-	,			
D E	64%	93%	29%	E	7,511	6,424	-1087	
						6,424 6,869	-1087 -17	
E	64%	93%	29%	E	7,511	-		
E F	64% 58%	93% 95%	29% 38%	E F	7,511 6,886	6,869	-17	
E F G	64% 58% 98%	93% 95% 16%	29% 38% -82%	E F G	7,511 6,886 6,069	6,869 5,933	-17 -136	
E F G H	64% 58% 98% 2%	93% 95% 16% 41%	29% 38% -82% 39%	E F G H	7,511 6,886 6,069 6,183	6,869 5,933 5,968	-17 -136 -215	
E F G H I	64% 58% 98% 2% 42%	93% 95% 16% 41% 74%	29% 38% -82% 39% 32%	E F G H I	7,511 6,886 6,069 6,183 6,736	6,869 5,933 5,968 6,850	-17 -136 -215 114	
E F G H I J	64% 58% 98% 2% 42% 52%	93% 95% 16% 41% 74% 41%	29% 38% -82% 39% 32% -11%	E F G H I J	7,511 6,886 6,069 6,183 6,736 5,856 6,461	6,869 5,933 5,968 6,850 5,861	-17 -136 -215 114 4	

- All subsequent aggregated results shown are estimates and will have the following criteria applied:
- Baseline period:
 - 10/11/22 1/19/23
 - 100 days
- EMBER period:
 - 1/19/23 5/27/23
 - 128 days
- COT, total feed, steam flow and feed composition are all expected to impact the degree of firing required.
- Lower COT, total feed and steam flow will require less fired duty.
- Feed type also determines fired duty required (i.e., harder to crack ethane than propane).
- Steam/feed ratio ranged between 36%-43% across both periods.

Coil Outlet Temperature (COT) Optimization

	COT Spread (°C)									
Furnace	Baseline (all)	EMBER (all)	EMBER (post tuning)	Delta (all)	Delta (post tuning)					
Α	19	20	11	1	-8					
В	27	15	7	-12	-20					
С	23	28	20	5	-3					
D	6	10	4	4	-2					
E	25	17	7	-8	-18					
F	12	7	4	-5	-8					
G	10	13	8	2	-2					
н	14	7	4	-7	-10					
I.	19	16	9	-3	-10					
J	16	11	6	-5	-10					
К	19	15	7	-4	12					
Fleet Average	17	14	8	-2.9	-9.3					
				-17%	-54%					

- COT spread was a primary objective for these tunings as it is an indicator for heat uniformity in the firebox.
- COT is an indication of reaction severity. A higher than setpoint COT results in overcracking (production of undesirable species like acetylene) and lower than setpoint COT results in under-cracking (unconverted ethane being recycled).
- Post tuning includes a smaller sample size looking at the data directly following an EMBER tuning. Because:
 - Furnaces come back online after decoke, unoptimized for a time.
 - Changing operational conditions.

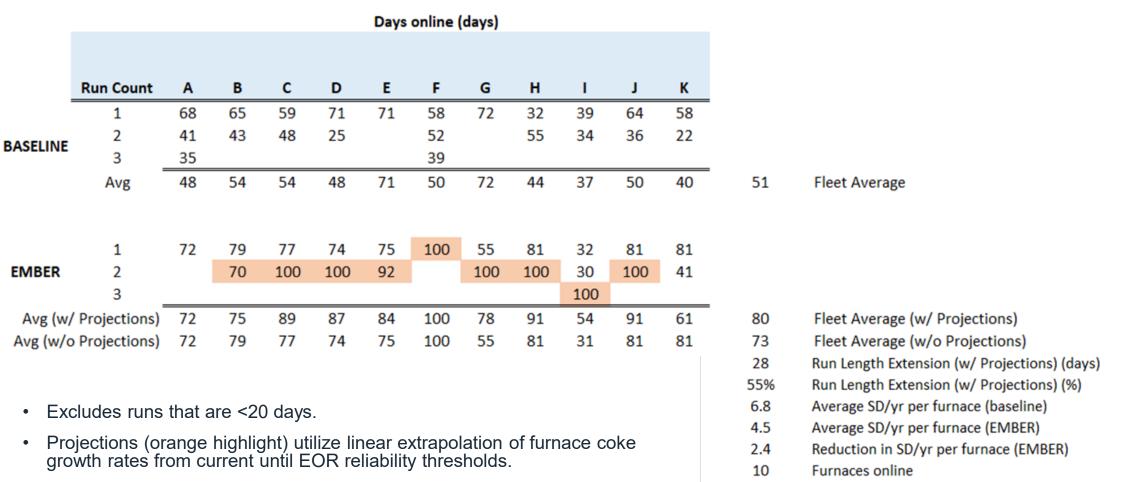
Excess O₂ Optimization

Excess O2 (vol% wet)								Stack Temp (°C)					
Furnace	Baseline (all)	EMBER (all)	EMBER (post tuning)	Delta (all)	Delta (post tuning)		Europee	Baseline		EMBER	Delta	Delta	
						_	Furnace	(all)	(all)	(post tuning)	(all)	(post tuning	
Α	3.1	2.8	1.8	-0.3	-1.3		A	120	121	114	1	-6	
В	3.2	2.6	1.5	-0.6	-1.7		B	131	127	119	-5	-12	
С	3.4	3.1	1.9	-0.3	-1.5		c	154	146	142	-8	-12	
D	3.2	3.1	2.0	-0.1	-1.2		D	151	144	138	-7	-13	
E	2.9	3.1	2.4	0.2	-0.5		E	177	164	135	-12	-42	
F	2.6	2.4	2.0	-0.2	-0.6		F	166	177	166	11	0	
G	2.9	3.1	2.1	0.2	-0.8		G	175	146	138	-29	-37	
Н	3.3	2.9	1.9	-0.4	-1.4		н	151	155	140	4	-11	
I.	3.3	2.8	2.1	-0.5	-1.2		1	178	186	178	8	0	
J	3.0	2.6	2.0	-0.4	-1.0		L	160	155	140	-5	-20	
к	3.0	2.7	1.9	-0.3	-1.1		к	151	145	138	-6	-13	
Fleet Average	3.1	2.8	2.0	-0.3	-1.1	F	Fleet Average	156	151	141	-4	-15	

- Target operational range for excess O₂ was 1.5-2.5%.
- Note: excess O₂ was not the sole emphasis for these tunings (also considered COT/TMT/venturi spread, among others).
- Typically, O₂ will decrease as furnace firing increases (at fixed burner damper settings). However, firing during the EMBER use period, was lower than the baseline period. In other words, with EMBER, O₂ can be safely controlled to a lower excess O₂, even with a lower degree of firing.

Total Fired Duty Optimization

	Heat F	•		
Furnace	Baseline (all)	EMBER (all)	Delta (all)	
Α	146	141	-5	-
В	143	133	-11	•
с	88	81	-7	
D	88	82	-6	•
E	91	82	-8	•
F	93	86	-6	
G	85	79	-5	
н	86	82	-4	
I	85	85	0	
J	82	82	0	
К	88	82	-6	_
Fleet Average	98	92	-5.3	Actual Re
			-3.0	Expected F
			-2.3	Adjusted R
			10	Furnaces o
			-23.0	Adjusted R
			8.0	Fuel Cost (
			95%	Asset Avai


- Expected reduction in firing is derived from an empirical model (0.81 RSQ) that predicts firing as a function of COT, total feed, steam flow and feed gas composition.
- It was expected that, to a degree, firing would be less from reduced operational setpoints.
- Adjusted reduction in firing is a result of the improved thermal efficiency (indicated by excess O2) and heater uniformity (indicated by COT spread) that was present during the EMBER use period.

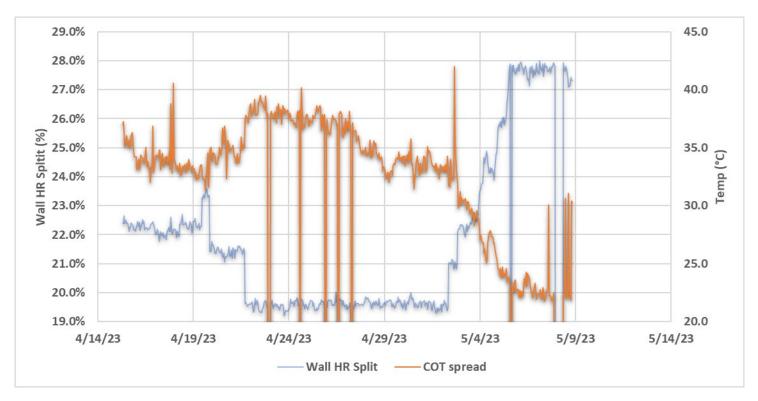
- duction in Firing (mmbtu/hr) (per furnace)
- Reduction in Firing (mmbtu/hr) (per furnace)
- Reduction in Firing (mmbtu/hr) (per furnace)
 - online
 - Reduction in Firing (mmbtu/hr) (per fleet)
 - (\$/mmbtu)
 - labilitv
- \$ 1,531,231 Annualized fuel savings (\$/yr)

© 2023 Koch Engineered Solutions. All rights reserved. | CONFIDENTIAL

Furnace Run Length Optimization

- Projections were conservatively limited to 100 days.
- Projections assume SOR TMT and EOR TMT were 1000°C and 1100°C, respectively (historical expectation).

25,000 Utility Cost per SD (USD/SD) 592,534 Annualized value from increased run length (\$/yr)


Annualized SD/yr reduction (EMBER) (Fleet)

© 2023 Koch Engineered Solutions. All rights reserved. | CONFIDENTIAL

23.7

Floor-to-Wall HR Split (Process Plan)

- In May 2023, the EMBER team designed and coordinated a process plan to prove the relationship (empirical observation) between floor-to-wall heat release split and COT spread.
- This plan was performed on three furnaces, each with a different design.
- To ensure safe burner operation, wall fuel pressure was increased while using EMBER to monitor excess air ratios.
- Post Process Plan evaluation indicated a 44% reduction in COT spread, from 39->22 °C (F110).
- Reduced COT spread has resulted in improved energy intensity (EI).

Summary of Results

- \$1.53MM annual fuel savings from O_2 reduction.
- 9,223 MTPY CO₂ reduction (~2% reduction)
- \$592K per year utility savings from increasing furnace run length between decoke.
- Increased visibility into combustion performance.
- Regular collaboration with EMBER team on furnace operation and troubleshooting.

Q & A

ENGINEERED SOLUTIONS

THANK YOU

Eric Gebhard eric.gebhard@kes.global 1-918-234-1845