The Potential of Small Modular Nuclear Reactors (SMRs) in Clean Energy Transition

Wison Luangdilok

H2Technology LLC, USA The Joint Graduate School of Energy and Environment, KMUTT

TNChE Asia 2024 3rd Thailand International Chemical Engineering & Chemical Technology Dusit Thani Pattaya Hotel, Chonburi, Thailand June 19-21, 2024

Why Nuclear?

- Clean energy
 - Greenhouse-gas emissions
 - 1/273th those of coal
 - 1/163th of gas
 - 60% of solar.
 - 75% of wind

Source: Ourworldindata.org/nuclear-energy

- Small footprint on Land Use
 - 1/2,000th of wind,
 - $\sim 1/400$ th of solar

Source: Jacopo Buongiorno (MIT)'s presentation

Energy security

- Reliable power delivery, day and night, every season, almost anywhere, on a large scale
- Complementing intermittent renewable energy

IEA: The path to net zero emissions is narrow. Staying on it requires immediate and massive deployment of all available clean and efficient energy technologies.

Evolution of Nuclear Power Technology

adapted from US DOE- http://nuclear.energy.gov.genIV/neGenIV1.html

Safety Improvement from LWRs to Non-LWR Advanced Reactors

What is the safety of nuclear power plants today and how much does it impact the cost?

Past accidents and safety concerns in Generation II's reactors (mid 1970s-mid 1990s) have kept nuclear energy expensive

Causes of Major Nuclear Accidents

TMI-2	March 28, 1979	USA	Human errors, inadequate training, Effect: Improvement in plant design and equipment, INPO established.
Chernobyl	April 26, 1986	Soviet Union	Flawed reactor design, inadequate trained personnel Effect: Use of RBMK 1000 design was terminated.
Fukushima Daiichi	March 11, 2011	Japan	Station blackout caused by extreme natural disaster, lack of safety culture NRA and JANSI established

Problems with old Gen II plants

- Nuclear plants depend on external power to operate.
- Nuclear plants designed 40 years ago need power to prevent overheating.
- Without power during station blackout event, fuel meltdown is unavoidable.
- SBO has been taken as a very low-chance, highconsequence accident scenario.
- New plants with passive safety system are designed to survive SBO.
- However, with lessons learned from Fukushima accident, old plants with emergency preparedness have been modified to prevent this kind of accident.

How the Technology Innovation has Changed?

- The evolution of the small modular reactors from these large LWRs.
- The revolution of further safety improvement
- The risk reduction in new nuclear plant investment by starting from smaller plants.

Safety Design Innovation in PWR

www.westinghousenuclear.com

www.nuscalepower.com

Gen II reactors will not survive an extended station blackout (SBO) w/o restoring power.

Westinghouse AP1000 can survive a SBO for 72 hrs w/o human intervention

NuScale can safely survive a SBO for 30 days and beyond without human intervention.

SMRs and Advanced Reactors

under development currently

		Ultra Safe Nuclear		NuScale			GE Hitachi	
Company	Westinghouse	Corporation	X-energy	Power	Kairos Power	Holtec	(GEH)	Terra Power
		Micro modular reactor (MMR)/	X. 400			OMD 400		
Reactor model	e-vinci	Nuclear Battery	Xe-100	VOYGR	KP-FHR	SMR-160	BWRX-300	Natrium
Energy Storage	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Molten salt-based, 500 MWe for 5.5 hrs
Electrical output/Thermal output	5 Mwe	5MWe/15 MWt	80 MWe/200 MWt, scalable to a 4-pack 300 MWe plant	77 Mwe/250MWt	144MWe/320 MWt	160 MWe	300 MWe	345MWe
Reactor type	sodium-cooled heat pipe	High temperature gas-cooled reactor	High temperature gas- cooled reactor	Integral PWR SMR	Fluoride salt-cooled high temperature reactor	Integral PWR SMR	Boiling water SMR	Fast reactor, 4x more efficient than LWR
Coolant/moderator	Sodium/graphite?	Helium/Graphite	Helium/Graphite	light water/light water	Fluoride salt FLiBe/graphite	light water/light water	light water/light water	sodium
Neutron spectrum				Thermal	Thermal	Thermal	Thermal	Fast
Primary Circulation	fully passive natural circulation in 12-ft pipe	Forced circulation	Forced circulation	Natural circulation	forced circulation	Natural circulation	Natural circulation	
Primary flow rate			71.1 kg/s helium flow rate		1200-1400 kg/s		company website has no technical details.	
NSSS operating primary pressure	1 bar?	3 MPa Helium primary	6 MPa Helium	13.8 MPa	< 2bar			
secondary pressure	Air-Brayton cycle	0.5 MPa secondary solar salt esystem	16.5 MPa -steam	4.3 MPa	<2 bar? Nitrate salt			
Core inlet temperature		300 C	260 C - Helium	258.11	550 C -LiF/BeF2			
Core outlet temperature	up to 800 C?	630 C	750 C - Helium	310.06	650 C - LiF/BeF2			
Intermediate inlet temp					500 C - NaNO3/KNO3			
Intermediate outlet temp					600 C - nitrate salt			
Secondary inlet temperature		275 C			300 C - steam			
Secondary outlet temperature		565 C	565 C - Steam		585 C - steam			
Average core power density			4.81 MW/m^3					
Effective core height (m)			9.18 m					
Effective core volume (m^3)			41.56 m^3					

Additional reactors: Oklo's 1.5 MWe micro-reactor, BWXT's 5 Mwe micro-reactor, Arc's 100 MWe SFR, Framatome's 272 MWe HTGR, Moltex's 300 MWe MSR, Rolls-Royce's 470 MWe LWR. See NEA SMR Dashboard for more SMRs worldwide.

SMRs and Advanced Reactors

under development currently

Reactor Model	o Vinci	Micro modular reactor (MMR)/	Xo 100	NuScale		SMD 160		Natrium
headtor model	e-vinci	Nuclear Dattery	Xe-100	VOTOIN		51011-100	DWIXX-300	Natium
Fuel type/assembly array	TRISO fuel	FCM (TRISO-based)/Hexagonal	TRISO particles in pebbles	17x17 square, each 2 m long	TRISO particles in pebbles			
No. of fuel assemblies in the core		180 fuel blocks (172 800 FCM pellets) -fully micro encapsulated	220,000 60mm-diameter graphite pebbles with 18,000 of 1mm-diameter TRISO particles in each pebble.	37	7			
Fuel enrichment		HALEU?	HALEU?	4.95%	6 19.75% HALEU			
Core discharge burnup	1	Average - 82.227 MWd/kg						
		Max - 131.287 MWd/kg	160 MWd/kg?					
Refueling cycle	Never	Never - for lifetime		up to 24 months	online/continuous			
Design life	8 years -factory built	20 years	60 years	60 years				
Reactivity control mechanism		Negative temperature coefficient; control rod insertion						
Plant footprint		130 x 96 m^2		12-pack 924 MW module: 140000 m^2 (280x500 m^2)				
			400 m radius - meltdown proof, walk-					
EAB distance			away safety	280m x 500 m				
RPV dimensions		Height - 13.25 m including lid and stand-pipes	16.4 m height	17.7 m height	6.1 m height			
		Diameter - 3.5 m	4.78 m O.D.	2.7 m diameter	3.9 m diameter			
RPV wall thickness			95 mm					
RPV weight		30.1 metric tons						
Seismic design (SSE)		0.3 g		0.5 g ZPA				

EAB and LPZ for NuScale SMR vs Large LWR

https://www.nrc.gov/docs/ML2005/ML20057G132.pdf, p. 232 of 327

Radiological consequences of Design Basis Accidents at EAB and LPZ

Postulated Accident

Loss of coolant accident

Main steamline break outside containment

iodine spike

iodine spike

Rod ejection accident

Fuel-handling accident

Small line break accident

iodine spike

Spent fuel pool boiling

* n/a, not applicable

Steam generator tube rupture With accident-initiated

With preaccident iodine spike

With preaccident

With accident-initiated

Reactor coolant pump shaft seizure With feedwater available

Without feedwater available

NuScale SMRs

AP1000 (Vogtle 3&4)

Table 5-6. Example dose results for design-basis source terms

Transient	and	Accident	Anal	vses

Control Room

34 mSv

(3.4 rem)

13 mSv

(1.3 rem) 9 mSv

(0.9 rem)

8 mSv

(0.8 rem)

12 mSv

(1.2 rem)

11 mSv

(1.1 rem)

29 mSv

(2.9 rem)

14 mSv

(1.4 rem)

26 mSv

(2.6 rem)

50 mSv

(5 rem)

<0.1 mSv

(<0.01 rem)

Event	Location	Acceptance Criteria (rem TEDE)	Dose (rem TEDE)
	EAB	6.3	0.011
rod ejection accident	LPZ	6.3	0.144
(containment release)	CR	5	0.131
	EAB	6.3	0.001
rod ejection accident (primary system release)	LPZ	6.3	0.001
(primary system release)	CR	5	0.004
	EAB	6.3	0.362
fuel handling accident	LPZ	6.3	0.362
	CR	5	0.313
main stand line has de	EAB	25	0.004
main steam line break	LPZ	25	0.019
(pre-incident louine spike)	CR	5	0.023
	EAB	2.5	0.0004
main steam line break	LPZ	2.5	0.0014
(conficident louine spike)	CR	5	0.0013
	EAB	25	0.637
steam generator tube failure	LPZ	25	0.663
(pre-incident loane spike)	CR	5	0.720
	EAB	2.5	0.039
steam generator tube failure	LPZ	2.5	0.040
(conficident loane spike)	CR	5	0.002
	EAB	2.5	0.062
primary coolant line break	LPZ	2.5	0.062
	CR	5	0.075
is dia s sailes DROT*	EAB	25	<0.01
(pre-incident iodine spike)	LPZ	25	<0.01
(pro moldoni louno spike)	CR	5	<0.01
inding spike DDCT*	EAB	25	<0.01
(coincident iodine spike)	LPZ	25	<0.01
	CR	5	<0.01

LPZ

150 mSv

(15 rem)

8 mSv

1 mSv

(0.8 rem)

(0.1 rem)

<1 mSv

<1 mSv

24 mSv

10 mSv

4 mSv

7 mSv

6 mSv

(0.6 rem)

<0.1 mSv

(<0.01 rem)

(0.7 rem)

(0.4 rem)

(1.0 rem)

(2.4 rem)

(<0.1 rem)

(<0.1 rem)

Table 15.3-1 Staff-Calculated Radiological Consequences of Design-Basis Accidents (Total Effective Dose Equivalent (TEDE))

EAB

190 mSv

(19 rem)

2 mSv

(0.2 rem)

<1 mSv

(<0.1 rem)

<1 mSv

<1 mSv

15 mSv

(1.5 rem)

24 mSv

(2.4 rem)

10 mSv

(1.0 rem)

5 mSv

(0.5 rem)

10 mSv

(1.0 rem)

n/a*

(<0.1 rem)

(<0.1 rem)

*Note: The iodine spike DBST is not an event, but rather a bounding source term associated with DBEs that result in primary coolant entering the containment.

https://www.nrc.gov/docs/ML2005/ML20057G132.pdf

https://www.nrc.gov/docs/ML0332/ML033290632.pdf

VEGP 3&4 – UFSAR

EAB and LPZ for AP1000s at Vogtle 3&4

Parameters indicating significant safety improvements in SMRs vs Large LWRs

Accident Frequency (calculated) of Old and New Reactor Designs

Demonstration of SMRs and Advanced Reactors

Reactor Technology	Company (reactor power)	Demonstration Schedule
LWR-based SMRs	NuScale (462 MWe), GEH (300 MWe), Holtec, Westinghouse (300 MWe)	NuScale by 2029-2030? GEH by 2028-2029? Westinghouse 2033?
Liquid metal fast reactor	Terra Power (345 MWe)	Terra Power by 2030- 2031?
High-temperature gas reactor	USNC (5MWe) X-Energy (80 MWe)	USNC by 2026? X-Energy [*] by 2029?
Fluoride Salt-cooled reactor	Kairos Power (134 MWe)	Demonstration of reduced-scale 35 MWt prototype is planned by 2030?
Heat-pipe-cooled micro reactor	Westinghouse (5 MWe)	Demonstration by 2026-2027?
Molten salt-fueled- cooled reactor	Terrestrial Energy (392 MWe) * X-Energy plan	Likely in Canada

Economics of Nuclear Plants

US AP1000 Construction Delay and Cost Overrun

A MIT Study on the Capital Cost of AP1000 at Votgle 3&4

https://web.mit.edu/kshirvan/www/research/ANP193%20TR%20CANES.pdf

- AP1000 remains attractive option for US market, according to an MIT study (Apr. 2022)
- An overnight capital cost of \$5100¹ per kilowatt for the next AP1000 series in the USA is achievable

Large PWRs	Overnight cost (\$/kWe)	Construction time (months)	Total cost (\$ billion)		
Pre-TMI	4,700	100	11		
Post-TMI	9,512	150	21		
Estimated post-TMI Vogtle 3&4	9,200	130	32		
Vogtle 3&4 projected cost (2021)	7,956	120	30		
Next AP1000 cost	5,100 ¹ (6800 ²)	60 (100)	11.2 ¹		
10 th AP1000 cost	3,400 ¹ (4500 ²)	50 (60)	7.72 ¹		
¹ 20% price inflation multiplied to original values					

² if labor productivity reduced by 2x.

AP1000 Potential Deployment

- Ukraine 2 units at Khmelnytskyi by 2030-2032 with total of 9 units. Work under way for first AP1000 in Ukraine as of April 2024 (Cost estimate \$5 billion per unit, \$4476/kWe)
- Poland, first unit to begin construction in 2026 and finish by 2033, then 6 units by 2040 as of April 2024
- Bulgaria signed a front-end engineering and design contract with Kozloduy NPP for an AP1000 unit (June 14, 2023)
 - AP1000 remains attractive option for US market, according to an MIT study (Apr. 2022)
 - Next AP1000 is projected to cost \$4300/KWe in the US (in 2018 dollars) and be cheaper in countries with lower labor rates and other costs than the US. <u>https://world-nuclear-news.org/Articles/AP1000-remains-attractive-option-for-US-market-say</u>

NuScale SMR Construction Cost Projection

NuScale

• 2007 founded

2013-\$226M from DOE

2015-\$16.6 M from DOE

2018 -

DOE

2012 UAMPS became a customer with a carbon-free power project. December 2016 DCA summitted

• 2011 Fluor Corp. provided funding and took over

management with Dr. Reves as CTO.

• May 23, 2019 Sargent & Lundy became a NuScale investor signing an MOU to provide additional architect engineer support.

• May 2022, Flour corporation is the contractor for \$40M from engineering, procurement, and construction. Majority owned by Flour

> Sep. 2020 DCA approved, Dec 2020 IPO issued • Feb 21, 2023 Design certification received •Nov 2023, UAMPS project was cancelled • 2024 COLA submit for a 6-module, 460 MWe SMR plant at the INL site for UAMPS? •2024 Construction begins? 2029 First reactor online?

Producer price index during pandemic (2020-2022) have raised the cost of: Fabricated steel plate by 54% Carbon steel piping by 106% Electrical equipment by 25% Fabricated structural steel by 70% Copper wire and cable by 32%

The first SMR design was certified by the USNRC on February 21, 2023.

Summary of the Cost of SMRs vs Large LWRs according to the MIT Study

- 9 BWRx-300 SMRs are cheaper than 36 module NuScale SMRs for a single site with 2.7 MWe capacity.
- Two large ABWRs are cheaper than nine BWRX-300s for a single site with 2.7 MWe capacity.
- The SMRs overnight costs per kWe are estimated to be 1.4-1.75 the cost of the next AP1000 due to lack of economy of scale.
- If a large power station is needed, a few large reactors like AP1000 would be cheaper than multiple SMRs like NuScale SMRs.
- SMRs are an attractive option for certain markets where only a fraction of power of a large reactor is needed.

NuScale Potential Deployment

- US INL site, \$9.3 billion, 462 MWe SMRs for UAMPS was cancelled in November 2023.
- Romania Earlier in 2023, NuScale and RoPower Nuclear—a joint venture of Nuclearelectrica and Nova Power & Gas — commenced front-end engineering and design work for a site in Doiceşti, Romania for the 462 MWe VOYGR plant, by the end of the decade.
- Poland April, 2023- applied for site and construction permit of NuScale SMR for energy use by a mining company KGHM. (April 2023, during the G7 meeting, US ready to lend Poland \$4 billion (\$3B from EXIM, \$1B from DFC) for SMR development.)
- In May 2023, Nucor, after investing in NuScale IPO, signed an agreement to a cost evaluation of installing SMRs on the site of Nucor's Electric-Arc-Furnace steel mills.
- Indonesia -March 2023 received a grant from the USTDA and select to assess the technical and economic viability of a 462 MWe NuScale nuclear power plant.

Potential Deployment of SMRs in various Applications

www.westinghousenuclear.com/energy-system/ap300-smr

Data centers next to Nuclear plants

US Data centers - 4% of US electricity Worldwide - 2% of global production

In the US 2700 Data centers (+crypto mining) sapped more than 4+2 percent of the US total electricity in 2022. A total of about 6% is not a trivial number at all. Worldwide, there are 8000 data centers, typically at least 100 MW for each center. The growth projection for the coming years would be astonishing since the world is just starting an Al boom.

Currently there is exploding demand for computational power to create and use AI systems.

We are in the race against climate change. The race is both a marathon and a sprint

Thank You