IMPROVE DISTILLATION EFFICIENCY BY UOP EQUIPMENT

Optimize Distillation Unit by using UOP High Performance Tray & Tube

Sangdoe Kim / Honeywell UOP Asia

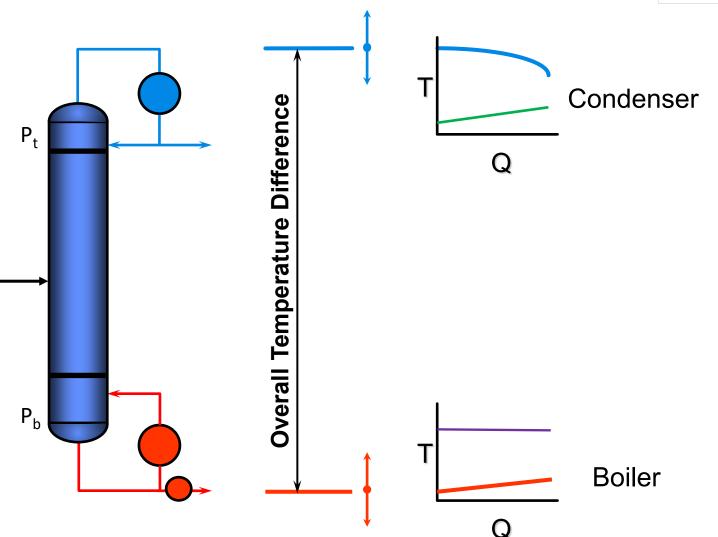
UOP HIGH PERFORMANCE TRAY & TUBE

Maximized Production Rates

Improved Product Purities

Improved Produce Recoveries

Minimum CAPEX


SIMPLE DISTILLATION SYSTEM

Honeywell

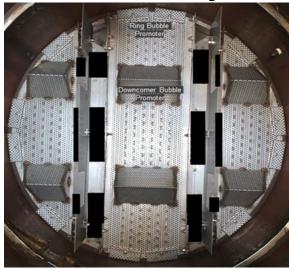
UOP

- Unit Operating Pressure
 - Condensing Medium
 - Boiling Medium
- Reboiler & Condenser
 Duties
 - Desired Separation
 - Number of Theoretical Trays Generated

UOP DISTILLATION TRAYS

• Low Tray Pressure Drop

- Maximize capacity
- Installation at low tray spacings

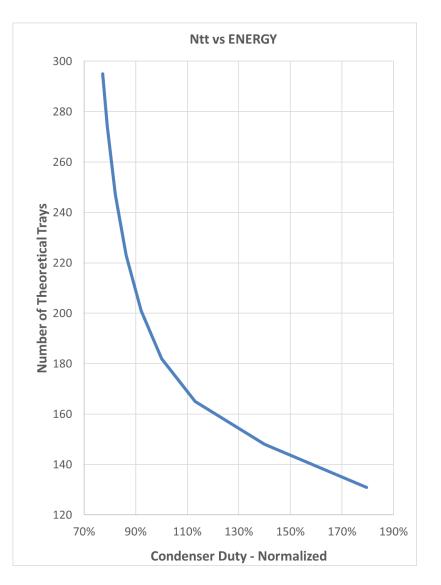

• Fully Active Area

- Maximize capacity
- Less prone to fouling
- Less prone to foams

MD[™] / ECMD Trays

ECMD+ Trays

Slotted Sieve


PFMD Trays

OPTIMIZING CAPACITY AND ENERGY

ECMD Revamp Scheme	1-for-1	5-for-4	4-for-3
Impact on Energy Requirement	100%	-14%	-16%
Number of Theoretical Trays	180	220	235
Tray spacings, mm	450	360	338

- Curve shape dependent on desired separation
- Project objectives will drive best revamp option
 - Energy savings vs capacity

CASE: C2 SPLITTER TRAY REVAMP

Mass Transfer: UOP MD[™] Trays Designed to minimize energy consumption with increased capacity

Customer Needs

- Column revamped in 1997 with 118 high capacity valve trays
- Revamp failed on capacity and purity
- Customer needed 10% higher capacity, higher purity & recovery
- Minimize energy requirements

UOP MD[™] Tray revamp resulted in:

- 12% ethylene production increase
- Improved purity & recovery
- Reflux ratio reduced by 9%
- Energy requirements for separation minimized

	Before Revamp	After Revamp	Change
Number of Trays	118	147	+24.6%
Тгау Туре	HC Valve Tray	MD™	
Tray Spacing, mm**	600/450	600/338	
Feed Rate, ton/hr	96.0	102.6	6.9%
Ethylene Product Rate*	75.5	84.8	+12.3%
Ethylene Purity, mol%	99.93	99.96	
Ethylene in Ethane, mol%	5.90	1.32	-77.6%
Reflux rate, ton/hr	345	352	2.0%
Reflux ratio	4.57	4.15	-9%

CASE: NAPHTHA STABILIZER REVAMP

Honeywell

JOP

UOP ECMD+/ECMD[™] Trays Designed to optimize capacity and energy efficiency

Customer Goal:

- Sharper LPG & Naphtha split needed
- Reduce heavies in top LPG product
- Minimize C4's in FRN (Min. IBP)
- Maximize FRN feed to Platforming Unit
- Optimize the bottleneck reboiler/condenser

UOP ECMD+™ Multi-Tray revamp resulted in:

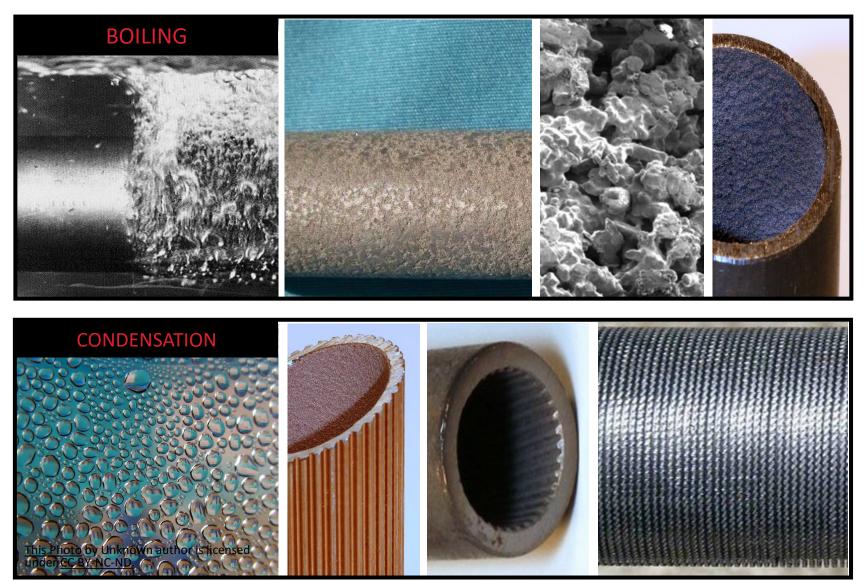
- Improved purity & recovery
- Energy requirements for separation minimized (10% lower reflux ratio)
- Extra capacity +10-15% after revamp

	Before Revamp	After Revamp
Tray type	Valve	ECMD+/ECMD
No. of trays	15(top) 17(btm)	18(top) 25(btm)
Tray Spacing, mm	610	488/407
Diameter, mm	1500/2600	1500/2600
Feed rate, m3/hr	240-250	255 x 110%
C5+ in top LPG, mol%	3~5	1.5
C4- in btm FRN, wt%	1.7~2.0	1.2
Reflux/Feed Ratio	0.25	0.23
Reboiler Steam, t/hr	16.1	16.3*
Reflux, m3/hr	63.0	58.4

* Feed temperature lowered to optimize interna loadings

Honeywell

UOP


UOP HIGH PERFORMANCE TUBES: HIGH FLUXTM TUBE / HIGH CONDTM TUBE

- Engineered Surfaces
- Enhancing Performance
- Boiling & Condensation
- Reduce CAPEX & OPEX
- 60 Years Experience
- 1900+ Installed Worldwide
- 440+ Revamp Projects

ENGINEERED SURFACES FOR BOILING AND CONDENSATION

CASE: BENZENE COLUMN REBOILER REVAMP

	Original Design Bare Tube	High Flux Tube Revamp	Change
	MP Steam (16 KG)	LP Steam (3.85 KG)	
Duty (MMKcal/hr)	2.63	2.63	-
Area (m²)	103	114	+11%
MTD (°C)	54.7	12.8	-74%
U-value (Kcal/hr.m ² .°C)	467	1,802	+286%
Hot Side Tin Tout	191.0 191.0	150.0 149.3	
Cold Side Tin Tout	135.0 136.0	135.0 136.0	
Steam Flow, kg/hr	5,580	5,110	-8%

CASE: NGL PLANT REBOILER REVAMP

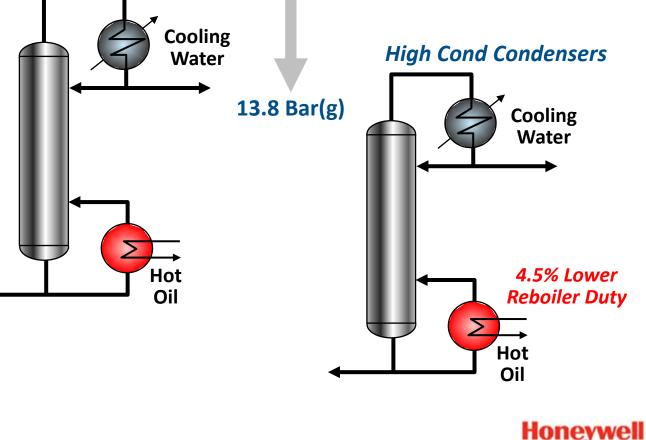
UOP₁₀

Heat Transfer: UOP High Cond Tubes Enabled Column Pressure Reduction PLUS Energy Savings

Customer Needs:

Maintenance Revamp

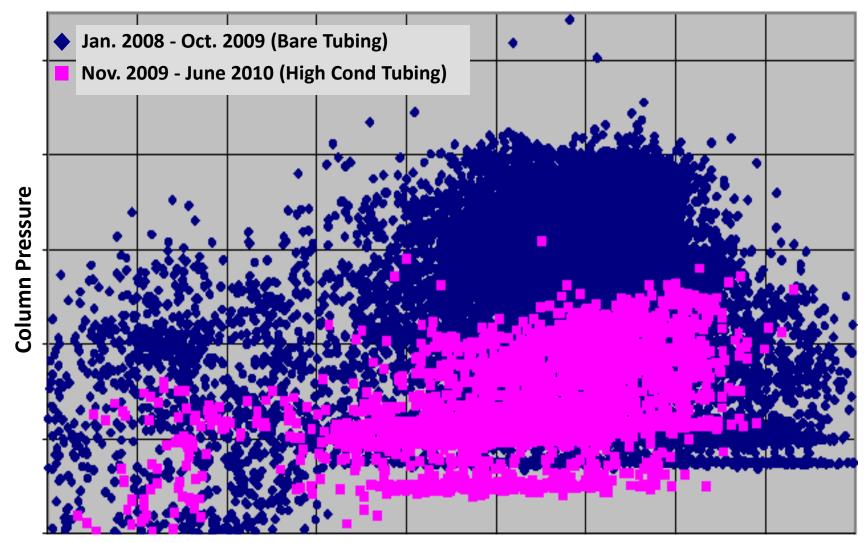
- Existing exchanger at end of life
- Investment Upgrade
- Summertime Water Temp Limit


UOP High Cond revamp results:

- Maintained Existing Footprint
- Lower energy consumption
- Overhead Pressure Reduced 1.4 Bar(g)
- Reduced Cooling Water Usage
- 4.5% reduction in reboiler duty

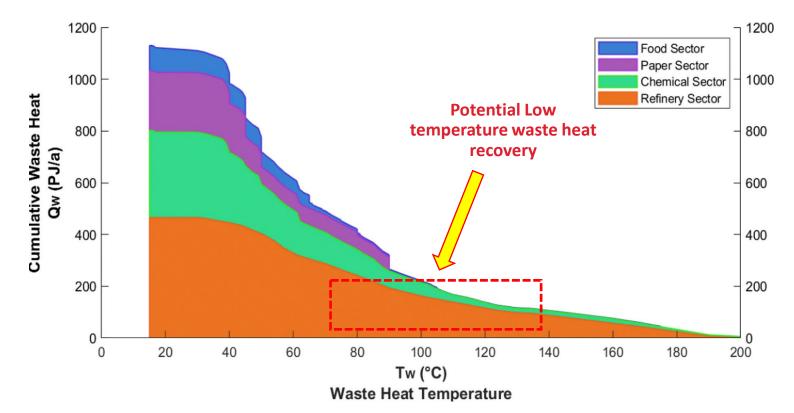
Stable operation year round

DeC3 Condenser OVHD Pressure Reduction



CASE : NGL PLANT REBOILER REVAMP

Honeywell


UOP

Column Feed Rate

LOW TEMP HEAT RECOVERY POTENTIAL

Significant untapped potential for low temperature heat recovery in Refinery sector

Source: An estimate of European Heat Pump Market Potential (2021) - Marina et al

LOW TEMP HEAT RECOVERY ORGANIC RANKIN CYCLE (ORC)

ORC for Low grade waste heat recovery

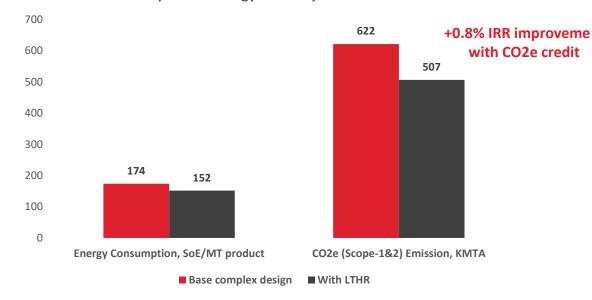
- A system to recover low grade waste energy from the process streams that cannot be recovered by conventional heat integrations
- Focus on large energy lost in Air coolers from fractionation overhead and Product condensers
- ~10% conversion efficiency

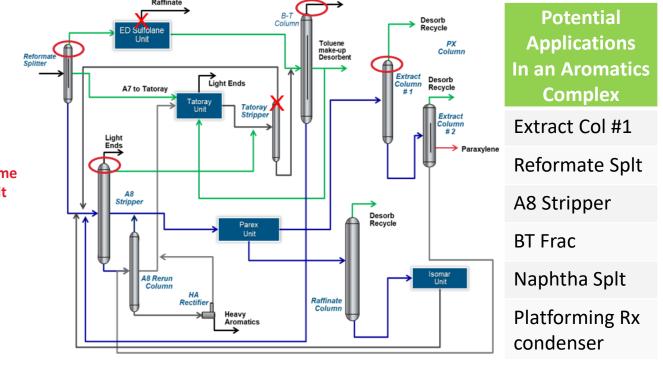
Advantages

- Reduces Opex, Cash Cost of Production (CCOP) and CO2 emission
- · Improve project economics and capital financing
- · Help to achieve cost competitiveness to older units/assets
- · Can be applied across the refinery complex
- Uses proven components

Generator Tpi Th Waste Heat Stream **Turbine or** Turbo-Expander Evaporator Tao Condenser Preheaters to improve efficiency Pump Air Exhaust Stream Tai

Significant potential to improve the energy efficiency and reduce CO2 emission




CASE STUDY: 1500KTA AROMATIC COMPLEX

- 17-18 MW Electricity generation from the waste heat recovery
- 4 years Simple Payback with \$30-35M Capex investment
- +0.6% Project IRR improvement from waste heat recovery

LTHR Impact on Energy intensity and CO2 emission

>100 kmta Scope-2 CO₂e reduction potential

NOTE: CO2e numbers represented here are estimated based on UOP internal tool and on the basis of electric grid mix of Asia Pacific region

Aromatics Complex is One of Several R&P ORC Integration Options

THANK YOU FOR YOUR PARTICIPATION

Q&A

EMAIL:

SANGDOE.KIM@HONEYWELL.COM

ATICHART.KITSANGUAN@HONEYWELL.COM

PATTARAPORN.SRIDECHPRASAT@HONEYWELL.COM