

Identify, Analyze, Optimize: Overcoming Energy Challenges in Chemical Engineering with Artificial Intelligence

Assoc. Prof. Dr. Chanin Panjapornpon

Department of Chemical Engineering, Faculty of Engineering, Kasetsart University

Introduction

Table 1 The framework for climate and energy – agreed targets

Years	Greenhouse Gas Emission	Energy Performance	Renewable Energy	Inter- Connection	
2020	≤ -20%	≥20%	≥20%	10%	
2030	≤ -40%	≥ 32.5%	≥ 32%	15%	

Source : The European economic and social committee

Chemical engineering data challenges

Energy efficiency analysis

Neural network-based analysis

Energy hotspot *identification*

Energy hotspot identification framework

Energy efficiency model of VCM process

Energy efficiency gap

Direct Chlorination Section		Oxychlorination Section			EDC Purification Section			EDC Cracking Section			VCM Purification Section			
No.	T ag ID	Description	No.	Tag ID	Desc ription	No.	T ag ID	Description	No.	T ag ID	Description	No.	Tag ID	Description
1	L-101	Ethylene feed rate	9	L-201	Oxygen feed rate	17	L-303	Inlet temperature T-301	25	L-401	Purified EDC mass flow	33	L-501	Inlet flow T-501
2	L-102	Chlorine feed rate	10	L-202	Ethylene feed rate	18	L-304	Temperature at Top T- 301	26	L-401	Temperature of inlet F-401	34	L-503	T-501 top temperatur
3	L-104	Outlet flow R-101	11	L-214	Outlet flow E-203	19	L-310	Inlet flow T-302	27	L-402	Fuel feed rate	35	L-507	T-501 bot temperatur
4	L-105	Vent gas rate R-101	12	L-218	Inlet flow T-201	20	L-314	Inlet flow E-306	28	L-404	Temperature of cracked gas	36	L-513	VCM rate
5	L-106	EDC mass flow	13	L-229	Recycled HCl rate	21	Utility	CW mass flow E-301	29	L-424	Temperature recycled D-404	37	L-516	Recycled EDC rate
6	L-106	Temperature of EDC	14	L-229	Temperature of recycled HCl	22	Utility	CW mass flow E-304	30	Utility	CW mass flow E-401	38	Utility	LP steam rate E-502
7	Utility	Quench air R-101	15	Utility	CW mass flow E-204	23	Utility	LP rate E-303	31	Utility	CW mass flow E-402	39	Utility	CW mass flow E-503
8	Utility	LP rate E-101	16	Utility	LP rate E-205	24	Utility	LP rate E-305	32	Utility	CW mass flow E-403	40	Utility	MP steam rate E-504

Fig.2 Contribution of the input weight to sectional and overall SEC on the system

Energy efficiency <u>analysis</u>: multirate sampling process

Energy efficiency analysis for multirate sampling

Panjapornpon C. Bardeeniz S., Hussain M.A., Vongvirat K, Chuay-ock C. "Energy efficiency and savings analysis with multirate sampling for petrochemical process using convolutional neural network-based transfer learning." *Energy and AI*, 2023, 14: 100258.

Multichannel convolutional neural network

Model focus and reproducibility

Energy efficiency optimization

Fig.4 Residual plot of actual and benchmark SEC provided by models.

Fig.5 Benchmarking of energy efficient operating range 15

X 85

38.5

38.6

38.7

38.8

38.9

39.0

39.0

38.6

38.7

38.5

X85

38.8

38.9

Energy efficiency <u>analysis</u>: under limited data

Energy efficiency prediction through digital twin aided model

Bardeeniz S., Panjapornpon C., Fongsamut C., Ngaotrakanwiat P., Hussain M.A. Digital twin-aided transfer learning for energy efficiency optimization of thermal spray dryers: leveraging shared drying characteristics across chemicals with limited data. Applied Thermal Engineering. 2024; 242, 122431.

Digital twin aided transfer learning concept

Digital twin aided transfer learning concept

Fig.6 Comparison of prediction plane networks trained using traditional and transfer learning.

 y_T

True Function

(Target Domain)

True Function

(Target Domain)

Initialize Parameter

(Source Domain)

Energy efficiency prediction result

Fig.7 Reliability analysis results of deep learning model.

3

Source-to-Target Data Ratio

2

Energy efficiency prediction result

Fig.9 Surplus energy demand and supply in the source domain for different options of source accuracy.

Fig.10 Surplus energy demand and supply comparison using different source networks.

Decision of energy <u>optimization</u>

Energy management for industrial processes

Case study: Complex of palm oil industry

Zero Waste

Impact of climatic variability

Reinforcement learning (RL) optimization

Environment model

 Table 2 Input and output variables for the environment model

Power plant	Input variable	Output variable	
Biomass steam boiler	X1 Ambient temperature (°C)	Y1 Biomass mass flow (kg/h)	
	X2 Relative humidity (%)	Y2 Steam output (kg/h)	
	X3 Power output steam boiler (kW)	Y3 CO ₂ emissions (kg/h)	
Gas engine generator	X1 Ambient temperature (°C)	Y1 Biogas mass flow (kg/h)	
	X2 Relative humidity (%)	Y2 Steam output (kg/h)	
	X3 Power output generator (kW)	Y3 CO ₂ emissions (kg/h)	

Reward

$$R = \begin{cases} if \ S_{bm}^{lb} < S_{bm} < S_{bm}^{ub} \ and \ S_{bg}^{lb} < S_{bg} < S_{bg}^{ub} \ and \ S_{PV}^{lb} < S_{PV} < S_{PV}^{ub} \\ R = -EDR - SDR - SER \\ else \\ R = -1,000 \end{cases}$$

S = Storage, bm = Biomass, bg = Biogas

Electricity Demand Reward: $EDR = k_1 \cdot \max(0, P_d - (P_{bm} + P_{bg} + P_{PV}))$

Steam Demand Reward:

$$SDR = k_2 \cdot \max(0, ST_d - (ST_{bm} + ST_{bg}))$$

Sustainability Energy Reward: $SER = (k_3 \cdot P_{bm}) + (k_4 \cdot P_{bg}) + (k_5 \cdot P_{PV})$

State and Action

Table 3 List of input and output variables for the environment model.

Element	Variable	Range	Domain	
Action	Capacity of the Biomass Steam Boiler (%)	[0, 100] + 5%	Discrete	
	Capacity of the Gas engine generator (%)	[0, 100] + 10%	Discrete	
	Capacity of the PV battery storage (%)	[0, 100] + 10%	Discrete	
State	Ambient temperature (°C)	[0, 40]	Continuous	
	Relative humidity (%)	[0, 100]	Continuous	
	Electricity consumption (MW)	[0, 10]	Continuous	
	Steam consumption (t/h)	[0, 52]	Continuous	
	Biomass storage (t)	[0, 500]	Continuous	
	Biogas storage (m ³)	[0, 10,000]	Continuous	
	PV battery storage (kW)	[0, 3000]	Continuous	

Energy management under climatic variability result

30

Thank you