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Table 1 The framework for climate and energy – agreed targets 

Years
Greenhouse 

Gas Emission
Energy 

Performance
Renewable 

Energy
Inter-

Connection

2020 ≤ -20% ≥ 20% ≥ 20% 10%

2030 ≤ -40% ≥ 32.5% ≥ 32% 15%
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Introduction

Source : The European economic and social committee



Ensure access to affordable, reliable, sustainable and modern energy 

Promote inclusive and sustainable economic growth by tracking production capacity

Build resilient infrastructure, promote sustainable industrialization and foster innovation

Make cities safe, resilient, and sustainable (Community related)

Ensure sustainable consumption and production patterns

Taking urgent action to tackle climate change and its impact

Energy Efficiency (EE)
54.3

Waste Energy 
Recovery (WE)

14.3%

Efficient Chillers (EC)
2.9%

Steam Saving and Steam 
Loss Reduction (SS)

14.3%

Cogeneration (CO)
2.9%

Steam Optimization
11.4%

energy conservation measures in petrochemical 
industry, Thailand

Tantisattayakul et al.  (2016),  J. Clean. Prod.
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Chemical engineering data challenges

Predictive Modeling

Process

Data

Energy 

Efficiency
Neural Network-Based Analysis

Data Type

• Continuous

• Operating Condition

• Integer

• Process Variable

• Categorical

• Type of catalyst

• Binary/Boolean

• Sensor Status

Dimensionality

• Time series data

• Online measurement of 
physical properties

• Spatial data

• Spatial temperature 
distribution

Reliability

• Missing data

• Unknown states

• Multi-rate information

• Limited data

• Corrupted data

• Drifting/Systematic errors

• Sensor failure

• Noisy data

• Poor measurement accuracy
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Energy efficiency analysis

Specific Energy Consumption

𝑺𝑬𝑪 =
𝑬𝒏𝒆𝒓𝒈𝒚 𝒖𝒔𝒆𝒅

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚

Chemical Process

Reduce Energy Consumption

Increase Production Capacity

Measurement Fault Outlier Operating Noise

Jan et. al. (2020), Energy Xu et. Al. (2019), Neurocomputing Saeed et. al. (2021), Sensors

Uncertainty in chemical industry
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Neural network-based analysis

Predictive Modeling

Process

Data

Energy 

Efficiency
Neural Network-Based Analysis

Reliability

• Missing data

• Unknown states

• Multi-rate information

• Limited data

• Corrupted data

• Drifting/Systematic errors

• Sensor failure

• Noisy data

• Poor measurement accuracy

Network Design

Tracking Energy 
Consumption

Provide Production 
Guidance

Determine Saving 
Opportunity
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Energy hotspot identification
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Energy hotspot identification framework
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Process 
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Improving Energy Efficiency, 

Resolve Energy Bottleneck
Multi-Objective 
Neural Network
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Energy efficiency model of VCM process
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Fig.1 Network training and layer updating procedure of MTL-LRP



Energy efficiency gap
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Fig.2 Contribution of the input weight to sectional and 

overall SEC on the system



Energy efficiency analysis:
multirate sampling process
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Energy efficiency analysis for multirate sampling
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1 minute sampling rate

5 minute sampling rate

10 minute sampling rate

Petrochemical Process
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Panjapornpon C. Bardeeniz S., Hussain M.A., Vongvirat K, Chuay-ock C. “Energy efficiency and savings analysis with multirate sampling for petrochemical 

process using convolutional neural network-based transfer learning.” Energy and AI ,2023, 14: 100258.



Multichannel convolutional neural network
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Input layer

Hidden layer

Output layer

Input Layer

Regression Layer

Concatenation Layer

Convolutional Layer_1

Max Pooling Layer_1

Fully Connected Layer_1

Convolutional Layer_2

Max Pooling Layer_2

Fully Connected Layer_2

Convolutional Layer_3

Max Pooling Layer_3

Fully Connected Layer_3

Fully Connected Layer

Pretrained network

From 2C-CNN

. . . . . .. . .

Pretrained network 

from 2C-CNN

Energy efficiency

Multi-timescale dataset 2 



Model focus and reproducibility
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Energy efficiency optimization
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Energy efficiency analysis:
under limited data
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Energy efficiency prediction through digital twin 
aided model 

17

Real Detergent Powder Process

Source Network

Target Network

Transfer 

Learning

Simulated Detergent Powder Process

Mixing Tank

Pump

Furnace

Mixer

Spray 

Dryer

Limited Data

Excess Data

3.84

24.79

21.19

36.25

8.11
6.95

19.91

4.40
42.14

11.62

2.82

7.86
48.88

22.59

17.29

8.65

11.52

9.30

10.20
14.36

0 5 10 15 20

0

100

200

300

400

500

600

700

 Actual Natural Gas Consumption

 Optimal Natural Gas Consumption

 Energy Saving Gap

 Benchmark Evaporation Efficiency 

 Optimal Evaporation Efficiency

Sample

N
a

tu
ra

l 
G

a
s 

C
o

n
su

m
p

ti
o
n

 (
m

3
/h

)

Shaded Area = 1.73 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E
v
a

p
o
ra

ti
o
n

 E
ff

ic
ie

n
cy

 (
G

J
/t

o
n

)

Evaporation Efficiency Improvment

Evaporation Efficiency of Simulated 

Spray Drying Process
Training Network

Transferred Network
Evaporation Efficiency of Real 

Detergent Powder Drying Process
Energy Benchmarking LNG Saving

Simulated Data 

(Excess)

Real Data 

(Limited)

Bardeeniz S., Panjapornpon C., Fongsamut C., Ngaotrakanwiat P., Hussain M.A. Digital twin-aided transfer learning for energy efficiency optimization of thermal 

spray dryers: leveraging shared drying characteristics across chemicals with limited data. Applied Thermal Engineering. 2024; 242, 122431.



Digital twin aided transfer learning concept

18

C
DBSA

NaOH

Water

Q1

Neutralizer

Additives

Mixing Tank

Pump

Furnace

Mixer

Spray 

Dryer

Natural Gas

 Air

Combustion Air

Q2

Detergent Powder

Exhaust Air

Source Domain

 Hot Air

Small Scale Simulation Large Scale Operation
Shared Knowledge

Different Product and Scale

Same Characteristics



Digital twin aided transfer learning concept
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Fig.6 Comparison of prediction plane networks trained using traditional and transfer learning.



Energy efficiency prediction result
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Fig.8 Effect of source domain on testing r-squared of target 

domain.

Fig.7 Reliability analysis results of deep learning model.



Energy efficiency prediction result
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Fig.9 Surplus energy demand and supply in the source 

domain for different options of source accuracy.

Fig.10 Surplus energy demand and supply comparison using 

different source networks. 



Decision of energy optimization
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Energy management for industrial processes

Non-renewable Sources

Electricity

Steam

Biomass

Industrial Processes

PV

Optimization of 

Energy Usage

Energy Consumption 

Forecasting

Enhanced Decision-

Making

Wind

Biogas

Renewable Sources

Natural gas
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Case study: Complex of palm oil industry
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Impact of climatic variability
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Reinforcement learning (RL) optimization
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Energy management with RL   
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Environment model

Power plant Input variable Output variable

Biomass steam boiler X1 Ambient temperature (⁰C) Y1 Biomass mass flow (kg/h)

X2 Relative humidity (%) Y2 Steam output (kg/h)

X3 Power output steam boiler (kW) Y3 CO₂ emissions (kg/h)

Gas engine generator X1 Ambient temperature (⁰C) Y1 Biogas mass flow (kg/h)

X2 Relative humidity (%) Y2 Steam output (kg/h)

X3 Power output generator (kW) Y3 CO₂ emissions (kg/h)

Table 2 Input and output variables for the environment model
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Environment
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Reinforcement Learning

State and Action

Table 3 List of input and output variables for the environment model.

Element Variable Range Domain

Action Capacity of the Biomass Steam Boiler (%) [0, 100] + 5% Discrete

Capacity of the Gas engine generator (%) [0, 100] + 10% Discrete

Capacity of the PV battery storage (%) [0, 100] + 10% Discrete

State Ambient temperature (⁰C) [0, 40] Continuous

Relative humidity (%) [0, 100] Continuous

Electricity consumption (MW) [0, 10] Continuous

Steam consumption (t/h) [0, 52] Continuous

Biomass storage (t) [0, 500] Continuous

Biogas storage (m3) [0, 10,000] Continuous

PV battery storage (kW) [0, 3000] Continuous
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Reward

Electricity Demand Reward:
1 max(0, ( ))d bm bg PVEDR k P P P P=  − + +

Steam Demand Reward:

Sustainability Energy Reward:

2 max(0, ( ))d bm bgSDR k ST ST ST=  − +

3 4 5( ) ( ) ( )bm bg PVSER k P k P k P=  +  + 

Storage,  Biomass,  BiogasS bm bg= = =

     

    

    1,000

lb ub lb ub lb ub

bm bm bm bg bg bg PV PV PVif S S S S S S S S S

R EDR SDR SER
R

e

and and

els

R

      
 

= − − − 
=  

 
 = − 



Energy management under climatic variability
result
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Thank you 
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