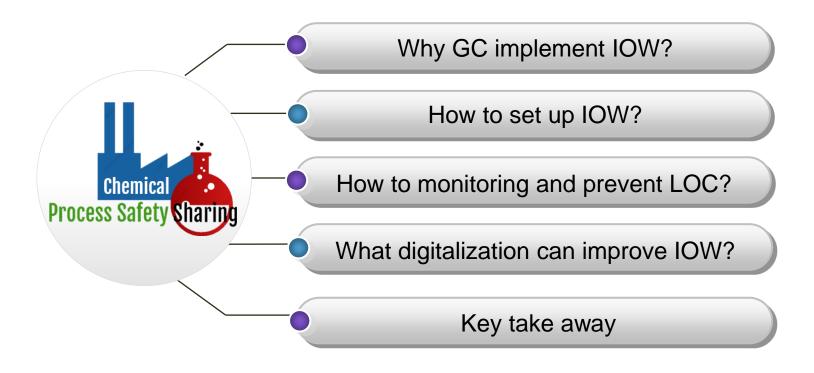


13th Chemical Process Safety Sharing (CPSS)

Digitalization for LOC prevention (IOW)

Kanyaporn Lertwimolkasem E-mail: kanyaporn.l@pttgcgroup.com Company: GC



Contents

Why GC Implement IOW?

- IOW is a system to prevent loss of containment from unexpected equipment degradation.
- Initially GC implemented OPW by using SHELL method and updated to be Integrity Operating Window (IOW) according to API RP584 since 2021 and now complete roll out to 23 plants.
- IOW consists of 3 levels: Critical IOW, Standard IOW, Informational IOW.

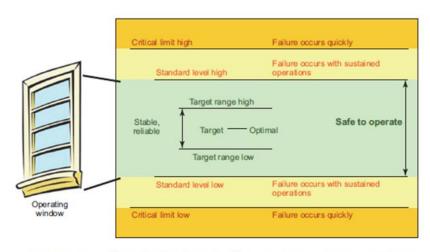
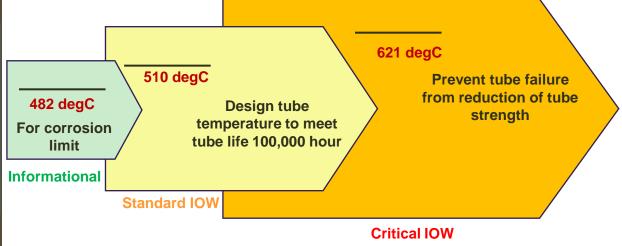


Figure 1—Zones of Operation Including Target Ranges with Standard and Critical Limits

- Critical IOW Level: That point at which an operator has the last opportunity to respond before rapid loss of primary containment may occur
- Standard IOW Level: That point above which sustained operation could cause **cumulative damage** possibly resulting in eventual loss of primary containment or impact the long-term unit performance and it's ability to meet turnaround run length expectations
- **Informational IOW Level:** Points that define stable, reliable, and profitable operations

Integrity Operating Window (IOW)



Example : Setting IOW of Heater Tube Temperature

How to set up IOW?

How to set up IOW?

Review team: - Process e

- Process engineer - Operator

- Inspector engineer

- Safety engineer

-Corrosion engineer

IOW limit setup:

1. Define design and operating condition

2. Identify potential damage mechanism

3. List all process parameters that could affect each identified damage mechanism

 Set upper and/or lower limits above unacceptable range of each damage mechanism

5. Evaluate **risk**

6. Determine **LEVEL of IOW** for each parameter 7. Assign **response time and actions** case of excursion

How to set up IOW?

1. Define design and operating condition

Feed effluent exchanger Normal operate 360-405 DegC 2. Identify potential damage mechanism

Thermal fatigue due to dissimilar welding

3. List all process parameters that could affect each identified damage mechanism

Temperature

Example

Feed Effluent Exchanger

4. Set upper and/or lower limits above unacceptable range of each damage mechanism

Max 455 DegC (refer to RBI study) RBI = Risk Based Inspection 5. Evaluate **risk**

Shell side damage (nozzle leak), feed loss of containment potential to unit shutdown 6. Determine **LEVEL of IOW** for each parameter

Risk = High Critical IOW 7. Assign **response time and actions** case of excursion

-Reduce feed and reduce reactor temperature -Set alarm 410 DegC

How to monitoring and prevent LOC?

Operator monitor by running tracking sheet every 12 hrs

Critical IOW hit limit

- 1. Operator immediately adjust to return variable back within the normal IOW level 2. Shift manager raise
- incident investigation report.

Start time: 9/16/22 6:00 PM 9/17/22 6:00 AM

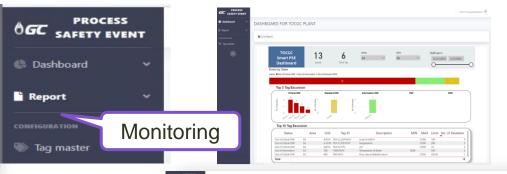
Note: Incident investigation report shall be raised when exceeding Critical IOW Parameters

	Input Day "D	" or Night "N"
Date	16-Sep-22	N
Shift		В

			Critica	I IOW	Standa	rd IOW	Informa	tion IOW	Average	Min	Max	Current	Status	Action
Description	Tag No.	Unit	Min.	Max.	Min	Max	Min	Max	12 HR	value	value	value		guideline
Depropanizer (C-xxx)														
OHVD Vapor Flow rate		kg/h		55000.00					54000.00		56000.00	56000.00	Outside Critical IOW	
Tower Delta Pressure		KSCG	0.10	0.20	0.12	0.18		0.10	0.17	0.11	0.17	0.15	OK	
(Upper)		ROCC	0.10	0.20	0.12	0.10		0.10	0.17	0.11	0.17	0.13	O.K	
Tower Delta Pressure		KSCG	0.10	0.20	0.12	0.18		0.10	0.15	0.13	0.17	0.13	OK	
(Upper)		Indee	0.10	0.20	0.12	0.10		0.10	0.15	0.13	0.17	0.13	O.C.	
Tower Delta Pressure		KSCG		0.15		0.14			0.13		0.17	0.17	Outside Critical IOW	
(Mid)		ROCC		0.13		0.14			0.13		0.17	0.17	Outside Offical IOW	
OVHD Pressure		KSCG		18.90		21.00		21.00					Outside Critical and Standard IOW	

3. Full incident investigate including Corrective Actions are developed to prevent future occurrences.

What digitalization can improve IOW?


Digital improvement system gap

Operator monitor by running excel spreadsheet every 12 hrs

- Change method of monitoring from excel sheet to digital software (PI AF).
- Strengthen in IOW monitoring and **incident investigation governance**.
- E-mail notification system and auto raise incident report when operating condition deviate from IOW.
- Live dashboard to show number of Critical/Standard/Information IOW exceedance.

											art man 05/01/2022	10 (146)	on/30/2022 BS	Of Search	
Tag marter															
0														Snarchy	
An	rear 5	nit:	Description	Tag Ne.	UOM	Critical Min-	Critical Max	Standard Min	Standard Mon	Information Min	Information Max	Current	Time (Start)	Tireo (End)	Duratio
10	200	100	Temperature outlet from 6-711	711162 PV	8	79						27,00160	6/10/2022 445/21 PM	8/10/2022 451-26 FM	.15
10	one	100	Semperature outlet from E-111	311362.PV	10	76						77,2944949	6/10/2022 451/21 PM	6/10/2022 4:56:36 PM	
10	D/EG	100	Semprenture outlet from E-111	TH1962.PV	150	70						77.30529	4/10/2022 #5640 FM	6/10/2022 A18/31 PM	
10	DITC.	100	Semperature outlet from E-111	311362.FV	=	20						77.31573	\$/10/2022 4.58:36.FM	6/10/2022 459:36 PM	
10	9/16	100	Temperature outlet tross E-511	311362 PV	8	26						77.32885	1/10/2022 419:41 PM	6/10/2022 10:40:06 PM	345
10	2/10	100	Temperature outlet from E-111	711362 PV	4	70						75.00825	5/10/0022 10:46:11 PM	A/10/2022 10:16:26 PM	10.
10	0200	100	Temperature outlet from E-511	THESELY	10	76						79.0052948	6/10/2022 10:58:06 PM	6/10/2022 11:5431 PM	5.9
10	0/EG	100	Semplesture outlet from E-111:	THISTARY	150	30.						78,07448	6/10/2022 11/04/H PM	6/10/2022 13:00:01 PM	

From: PIMS Alert <pims@pttgcgroup.com> Sent: Monday, November 27, 2023 10:02 AM

To: Bongkoch Y <R-P1-TE/1553> <Bongkoch.Y@pttgcgroup.com>; Chanyanutch S <R-P1-TE/1600> <Chanyanutch.S@pttgcgroup.com>; Pawat S <R-P1-TE/1600> <Chanyanutch.S@pttgcggroup.com>; TE/1464> <Pawat.S@pttgcgroup.com>; Pisut V <R-P1-TE/1597> <Pisut.V@pttgcgroup.com>; Pralachoak P <R-P1-TE/1552>

<Pralachoak.P@pttgcgroup.com>; Samak K <R-P1-TE/1575> <Samak.K@pttgcgroup.com>; Suppanat C <R-P1-TE/1579> <Suppanat.C@pttgcgroup.com> Thanawat U <R-P1-TE/1475> <Thanawat.U@pttgcgroup.com>; Wirinya K <R-P1-TE/1759> <Wirinya.K@pttgcgroup.com>; Noraniti Wongnoen

Subject: PSE Digital Alert

Dear All Concerned.

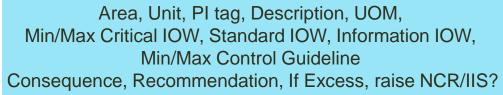
This is automatic email from PSE digital program to warning about operating deviation from the control limit The consequence of deviation in term of equipment failure is reported in the detail as table below

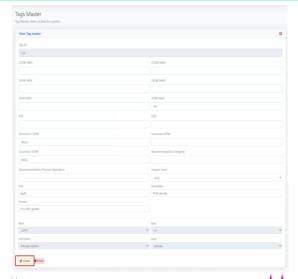
Time	Location	Description	Tag	иом		ical W	Actual	Status	Impact level	Excursion impact to
	Location	Description	lag	COIVI	Min	Max	valve			equipment integrity
11/27/2023 10:02:12 AM SE Asia Standard Time (GMT+07:00:00)	REF/R- P1/Reactor Section	R-1504 Inlet Temperature	15TRCA010.MEAS	deg C	549		532.8	Out of Critical IOW	High	Mechanical design temperature at 549 degC

Best Regards. PSE digital software


What digitalization can improve IOW?

Step to implement IOW monitoring by PI-AF





In case IOW parameter remove/add/change setting

Email recipient for notification

Process engineer who has authorize can edit in web-based

Key take away

1.IOW is the tool to monitor process parameter to prevent pressure equipment fail and possible consequence to loss of containment.

2. Advantage of implement Digital tool is real time monitoring and immediately alert to concern party.

