

Addressing LOPC Risks in Brownfield Projects

Presenter Name: Shivaprakash Ponniah E-mail: shiva.prakash@irescglobal.com

Company: IRESC

Contents

What is Escalation Risk?

Drivers for Opting Brownfield Modifications

Why is Evaluating Risk relevant?

for Brownfield Modifications – Need for evaluating Escalation/Incremental Risk

Approach to account for escalation risk

Drivers and Risk Impact from Brownfield Modifications

Drivers

- Skips the hassle of finding new land
- Reduces public consultation / permits needed
- Infrastructures & services are already in place

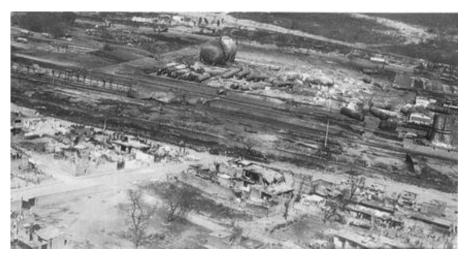
Risk Impact

- Vacant plots are sometimes used even if it is not initially intended for expansion
- Reduced separation distance to adjoining plants/ plant boundary
- Limited plot area may compromise inter-equipment separation distance
- Legacy plants may be operating with inadequate safety features when compared with today's practice
- Potential increase in risk due to escalation or incremental risk due to the modifications

San Juanico Disaster

Rupture of 8" LPG piping causing vapour cloud drift towards ground flare


 Flash fire and flame impingement on one of the sphere causing BLEVE


 Fragments from this sphere and leaked materials damages other equipment/ spheres

Overall BLEVE of 15 of 48 vessels in domino

fashion

San Juanico Disaster

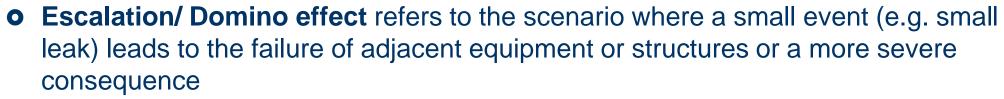
- 500-600 deaths; 300+ never identified
- 5000-7000 severe injuries

Adjacent facilities damaged

- Unigas Plant with further LPG Facility
- Gasomatico facility for LPG bottling and dispatch by truck
- Houses destroyed beyond battery limit

The cylindrical tank that flew furthest penetrated some 1,200 m into the housing area and crashed

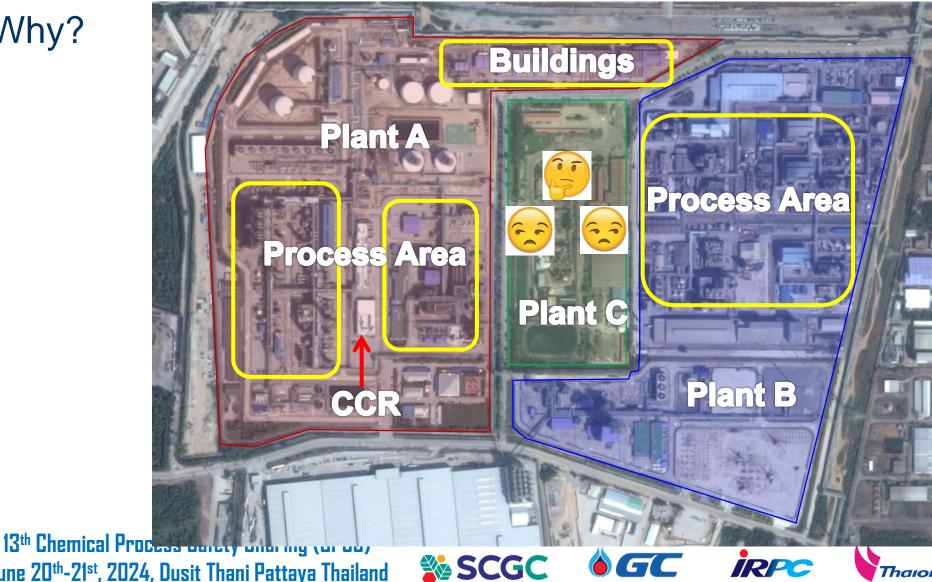
The desolation of the burnt-out houses recalled a war scene



What is Escalation Risk and Cumulative Risk

• Cumulative Risk refers to the integration of risk from existing Vs new unit to get overall risk perspective. This also applies to integration of risks across facilities.

Sample Industrial Zone

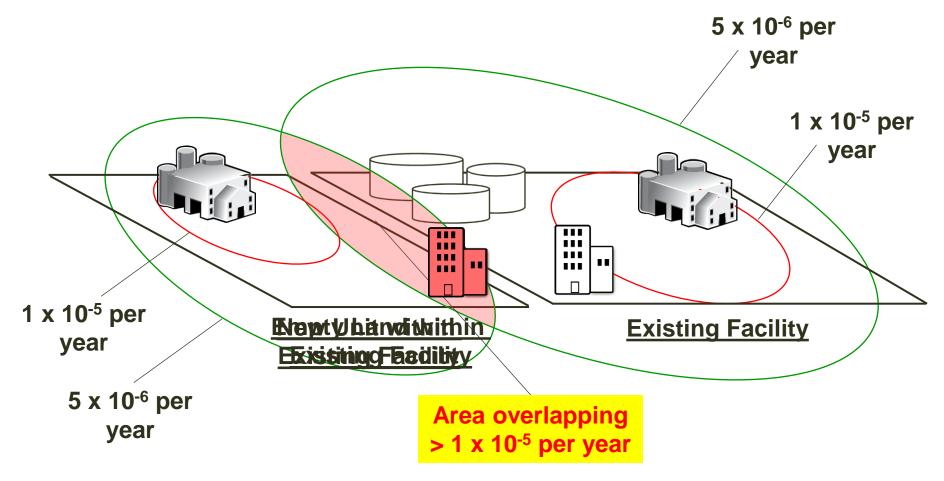


Need for Cumulative QRA accounting Escalation/ Incremental Risks

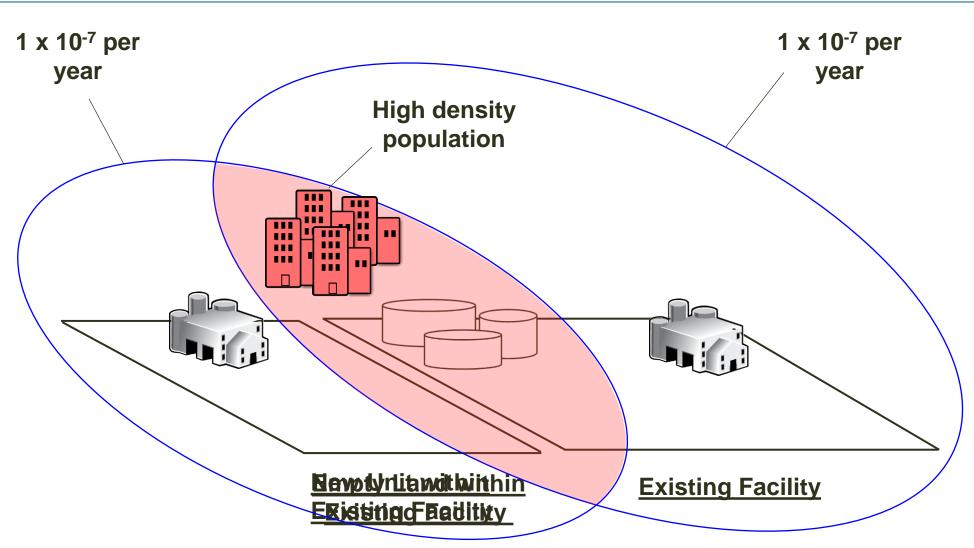
• Why?

Need for Cumulative QRA – considering escalation risk

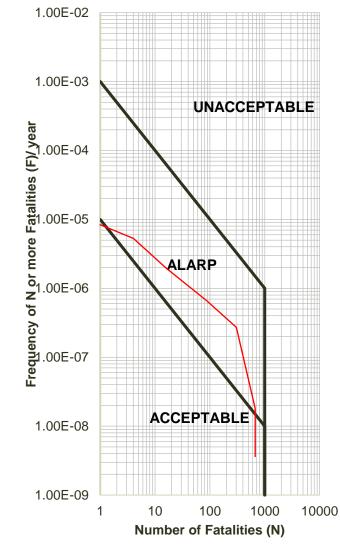
- Offsite
- Domino effects/ escalation
- Additional risks during construction phase of brownfield expansion (SIMOPS, higher manning)

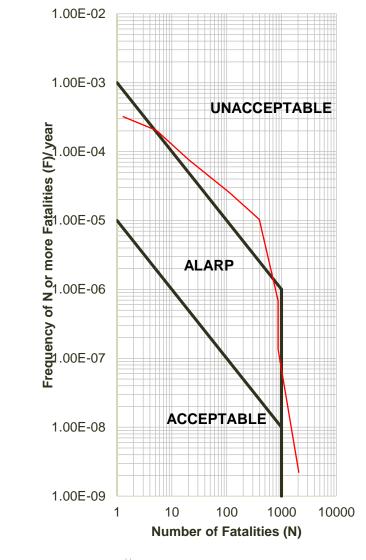


Impact to Onsite

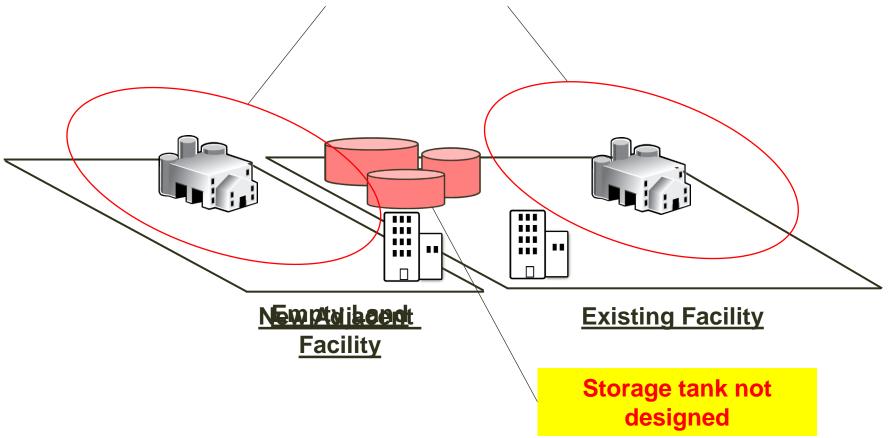


Impact to Offsite




Impact to Offsite

Chemical Process Safety Sharing



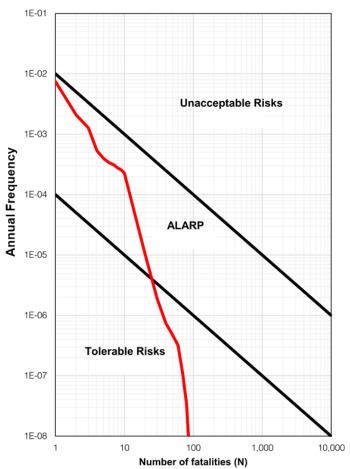
Domino Effects/ Escalation

1 x 10⁻⁴ per year exceedance contour for 2 psi

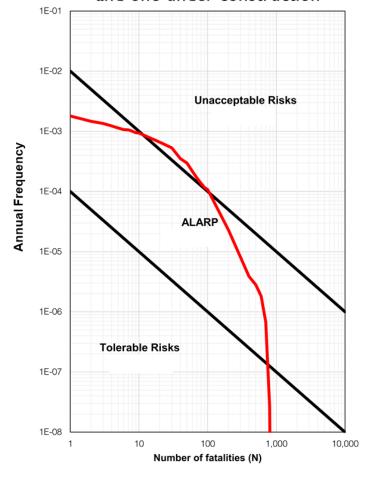
SIMOPS Risk

Increased manning during construction of brownfield

- Construction relating to a revamping/ expansion project running concurrently while existing process facilities are in production mode
- Lifting, welding (increased ignition risk), excavation, transport activities
- QRA should account for the additional manning and temporary structures
 - 200 to 2000 construction personnel for 6 to 36 months
 - Significant impact on group risk / societal risk
 - Temporary structures not constructed to withstand blast and fire
- Ensure risk criteria is met considering increased manning



SIMOPS Risk



All trains in operation

SIMOPS with one train operating and one under construction

Why Evaluate Escalation/ Cumulative Risk

Escalation Risk

- To limit escalation beyond the boundary
- To limit impact to adjacent structure or equipment
- To ensure adequate spacing between layout/equipment

Cumulative Risk

• To ensure overall risk within and outside the facility is in ALARP/ Acceptable region due to modifications/ new developments

Challenges

Lack of legal requirement or Criteria

Lack of Communication

- Unclear Responsibility Risk is posed by different facilities and together they should agree on the approach and choose a common consultant who will perform the study
- Major complexes wherein expansion works are done Effort in estimating cumulative/ overall risks is significant
- Different units within an expansion project handled by different EPC Contractors

Way Forward

Some Countries have identified this escalation risk issue and criteria to meet

Project / Region	Risk Criteria (per year)	Harm Criteria	Requirement					
Singapore guideline –	1E-04 (for fixed facility)	• 20 kW/m² (Fire)	Confined within					
escalation to offsite		2 psi (Explosion)	boundary					
New South Wales HIPAP 4 –	5E-05	• 23 kW/m² (Fire)	Confined within					
escalation to boundary		 14 kPa (Explosion) 	boundary					

- Major complexes wherein expansion works done Risk file of existing facilities to be provided to Safety Consultant who can integrate risk of new facility with existing to get the overall risk perspective
- Voluntary Joint Safety Report or Authorities to coordinate/ commission a region-wide assessment

Approach- Escalation Risk

Now we know why Escalation Risk is important

So how to calculate Escalation Risk???

Evaluating Escalation Risk – Prescriptive-Based

- Industry standards
 - AICHE-CCPS Guideline for Facility Siting and Layout
 - IChemE Process Plant Layout
 - Other relevant standards

Evaluating Escalation Risk – Prescriptive-Based

Table A TYPICAL SPACING FOR PLANT EQUIPMENT FOR FIRE CONSEQUENCES																													
Explosion and toxic concerns may require greater spacing											- 1																		
Horizontal Distance (Ft)																													
	Text References	Boundaries	ss Unit Battery								s, nontoxics																		
Boundaries	Naturalious	-	Process L Limits	è		la la			aftche		ggs																		
Process Unit Battery Limits	5.7.3 6.8.1	1	100	Property	rgency	I ₩			g uo		dmoo		8																
Property	5.2.5	1	200	NM	Emer	Valves		ye.	Activa		, S		ge Te																
Emergency		1				ESD	Ритря	Monitors	ESD/		l aggin		Store																
ESD Valves—Manual	6.8.15	1	50	NM		NM	를	mts, N	P E	١.	l lie		On-site			Area)													
Fire Pumps	5.8.2	1	200	NM		NM	NM	ab de	Spray	2005	ou Bullo		18			(Utility)													
Hydrants, Monitors	6.8.18	1	NM	NM		NM	NM	NM	Water	N 250	Pand	salters	o et		2	l ligo													
Water Spray and ESD Activation Switches	6.8.14	1	50	NM		NM	NM	NM	NM	P 700	ment han	and De	Knock	ŧ	000	enera													
Process Vessels											Equip	ors ar	É	Equipm	6	wer G		niting)											
Equipment handling nonflammables, noncombustibles, nontoxics	6.8.2	1	NA	NM		NM	NM	NM	NM		NM	React	E E	fer E	chan	ξ. 8		1 2	8										
Reactors and Desalters	6.8.4		NA	200		50	200	50	50	1	NM	NM	Towe	Trans	9 35	9890		- No	Bulgiu										
Towers, Drums, Knock Out Pots, On-site Storage Tanks	6.8.3 6.8.5	1	NA	200		50	200	50	50	1	NM	15	15	Heat	peloc	Comp		nition or	188				self-igniting	gija					
Heat Transfer Equipment		1								•					¥	š	5000	ngion	tion or					self-igniting					
Air cooled heat exchangers—process	6.8.7		NA	200		50	200	50	50		NM	15	15		NM	Boiler	ing To	v.	Itokan				ou o	s uou			(Sars)		
Bollers, Air Compressors, Power Generation (Utility Area)	5.5		100	100		50	200	50	50		NM	100	100		100	NM	800	sugers	- S			_	autoignibon	ion or		· 6	28		
Cooling Towers	5.5.6		100	100		50	100	50	50		NM	100	100		100	100	25	Exch	sugers	g	neut	suders		hoiguilion		pt LFG)	pue s		
Exchangers (< autoignition or non-self-igniting)	6.8.6		NA	200		50	200	50	50]	NM	15	15		15	100	100	NM	Enchi	Heaters	Equip	Exper	selden	Ne > s		(except	Trucks		
Exchangers (> autoignition or self-igniting)	6.8.6		NA	200		50	200	50	50		NM	15	15		15	100	100	15	NM	Fired H	tating E	Compressor,	Flam	nables		Cars	Racks	Dia.	
Fired Heaters	6.8.8		NA	200		50	200	50	50		NM	50	50		50	100	100	50	50	NM	Rota	di l	dllng	Flamr		and Rail	ging F	fig.	
Rotating Equipment																						GBS	20	handling	hent		8 6	a page	
Gas Compressor, Expanders	6.8.10		NA	200		50	200	50	50		NM	15	15		15	100	100	15	15	50		NM	Pumps	s har	Equipn	for Trucks	88	880Ci	
Pumps handling Flammables > autoignition or self-igniting	5.8.5 6.8.11		NA	200		50	200	50	50		NM	15	15		15	100	100	15	15	50		15	NM	Pumps	Jer E	Racks fe	- Ge	o o	
Pumps handling Flammables < autoignition or non-self-igniting	5.8.5 6.8.11		NA	200		50	200	50	50		NM	15	15		15	100	100	15	15	50		15	NM	NM	Transfer	ng Re	E B	(piping	
Transfer Equipment																										Loading	Liquifie	ocks (,
Central Loading Racks for Trucks and Rail Cars (except LFG)	5.8.8		200	100		50	200	50	50		NM	200	200		200	200	150	100	200	200		200	200	50		NM	Amy L	Pipera	perac
Any Liquified Flammable Gas Loading Racks (Trucks and Rail Cars)	5.8.8		250	350		50	250	50	50		NM	250	250		250	250	250	250	250	250		250	250	50		150	NM	Main	88
Main Pipe Racks (piping not associated with unit)	5.8.6		NM	100		NM	50	NM	NM		NM	50	50		NM	50	50	15	15	50		50	50	50		50	50	NM	Proor
Process Pice Racks	6.8.19		NM	200		NM	200	NM	NM		NM	15	15		NM	100	100	15	15	50		15	15	15		200	200	NM	NM

Typical Equipment Spacing Table (CCPS, 2003)

Evaluating Escalation Risk

Prescriptive approach

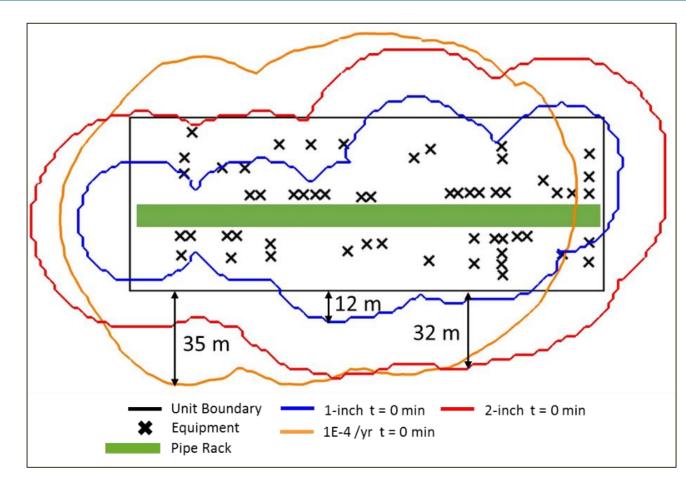
Though prescriptive approach is followed it has to be supplemented by one of the below methods

Consequence based approach

Fire events through representative credible leak size (1" or 2"), 37.5 kW/m² or 3 psi, reaching sensitive receptor (e.g. building or adjacent process unit)

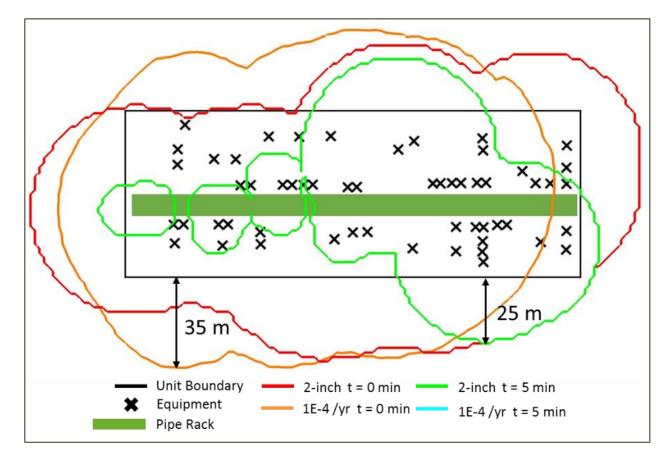
Risk based approach

- Harm criteria and risk criteria
- Equipment damage threshold for escalation:
 - Jet Fire Engulfment for 5 minutes
 - Pool Fire Engulfment for 10 minutes
 - 37.5 kW/m² Thermal Radiation for 60 minutes



Results for 1", 2" & Risk-based at t = 0 min

SGP Consequence-based and Risk-based Assessment Result (t = 0 min)



Results for 2" & Risk-based at t = 0 & 5 min

SGP Consequence-based and Risk-based Assessment Result (t = 0 min and t = 5 min)

* Cumulative frequency at 5 min does not reach 1 x 10⁻⁴/yr

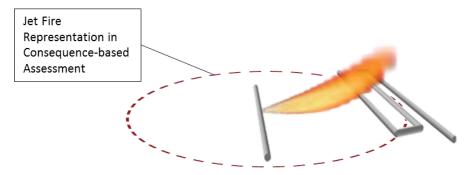
Impact Distances Summary

Process Safety Sharing

Impact Distances from SGP Unit Boundary									
Methods	Long-side	Short-side							
Results based on t = 0min									
Consequence-based (1-inch)	12 m	20 m							
Consequence-based (2-inch)	32 m	35 m							
Risk-Based (1 x 10 ⁻⁴ /yr)	35 m	25 m							
Results based on t = 5 min									
Consequence-based (2-inch)	25 m	10 m							
Risk-Based (1 x 10 ⁻⁴ /yr)	_*	_*							

- For comparison, the GAPS guidelines recommend 30 m (100 ft) separation for such units
- Impact distance for 2" Consequence-based similar to Risk-based at 1 x 10⁻⁴ exceedance /yr
- Impact distances reduced at t = 5 min considering detection, isolation & blowdown
 - can be ignored if such measures are not provided or effectiveness is uncertain

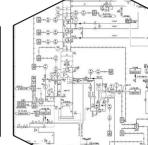
13th Chemical Process Safety Sharing (CPSS)
June 20th-21st, 2024, Dusit Thani Pattaya Thailand



Limitations of Consequence-based Approach

- Impact distance for 2" release is twice as large as for 1"
 - Selection of appropriate hole size is critical to the assessment
 - Often based on individual's judgement rather than a sound justification
- Consequence-based approach does not address directional characteristic of a jet fire

Limitations of Risk-based Approach



Chemical Process Safety Sharing

- Piping arrangement
- Number of plant component

Require great level of details of the project

- Inventory calculation
- Frequency estimation
- Full range of hole sizes/ scenarios

- Selection of failure database
- Assumptions relating to ignition probability, detection success probability etc.

Uncertainty

Findings From The Case Study

Results by risk-based approach

- Taking into account the uncertainty (e.g. failure data, ignition probability, detection & isolation success probability), distance to 1 x 10^{-4} /yr at t = 0 min is more appropriate
- Gives similar results as the consequence-based approach using 2-inch release
- Gives similar separation distance of 30 m as suggested in GAPS guideline for such refinery units
- Fire protection for equipment and structure within and outside unit to be determined individually using exceedance curves

Further work

Similar comparative analysis to be conducted for more process units

Summary

Identifying and Managing escalation risk for brownfield expansion can be challenging and complex

Joint efforts is required between various stake holders

Appropriate approach to be selected for escalation risk evaluation

Thank you for your attention

