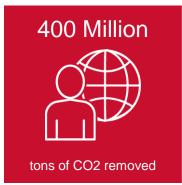


Pornravee Leelachaikul

Technical Support Consultant


TNChE 2024 Conference: 20 June 2024

| GS2028 | April 1, 2024 | © Yokogawa Electric Corporation

Introduction to KBC

- KBC is an "Energy" and "Process" Technology and Consulting Company.
- KBC has been working with global customer since 1979 and has become a Yokogawa company since 2016.
- We are committed to improving our clients' operations, asset reliability, safety and environmental performance.

GHG Emissions Management: What the Industry Needs

30 years ago	Today
Reduce energy use based only on cost	Reduce both, energy use based on cost and emissions

Immature practices and processes towards hydrocarbon losses reporting and reduction

Immature practices and processes towards GHG emissions reporting and reduction

Need for auditable, standard, and compliant processes

GHG Emissions Management: What the Industry Needs

Industry needs

- Frequent and accurate emissions reporting
- Auditing / compliance
- Decision-making (Actionable operational improvement)

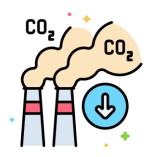
Business goals

- GHG emissions reduction
- Better position to get financial aid
- Reduce time to report emissions
- Data reliability

Solution required

- Monitoring, optimization, accounting and reporting capabilities
- To control, reduce and report GHG emissions (Impacts on operations and business)
- Different timespans (real-time, daily, monthly, yearly) for different stakeholders
- All-in-one solution

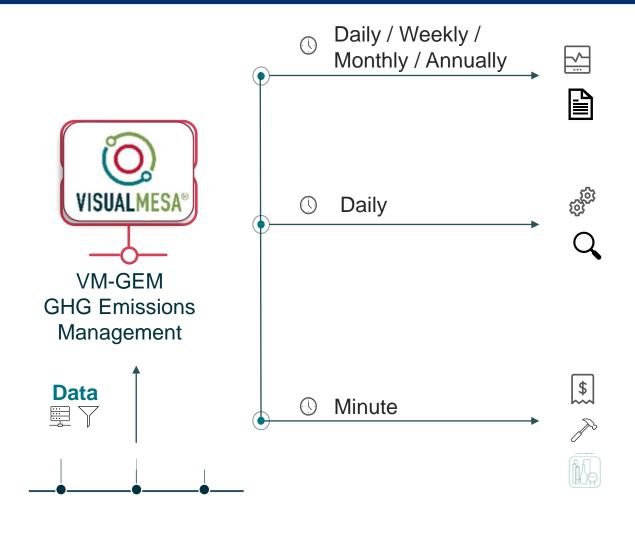
Visual MESA for GHG Emissions Management


Values of Visual MESA for GHG Emission Management

Visual MESA GHG Emissions Managements continuously monitors emissions and energy consumption across the entire plant operation, giving you accurate, real-time data and alert for decision making.

Real-time Emissions Monitoring

Reduced Emission and Saved Energy



Actionable Recommendation for Operations Automated Auditable Reporting

How it works?

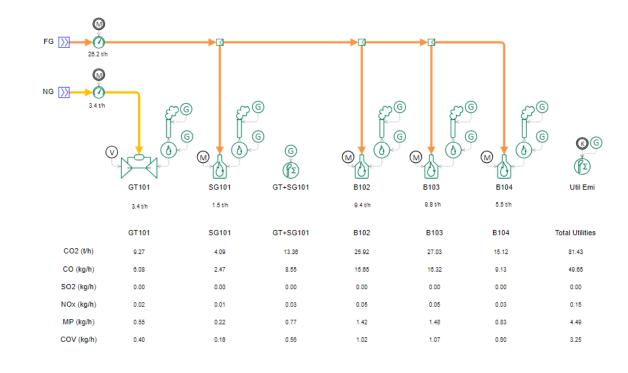
GHG Emissions Reporting & Tracking

- Total GHG Emissions calculation for Scope 1, 2, and 3.
- Compare GHG Emissions reduction against target
- Auditable Reporting Standards compliance

GHG Emissions Accounting

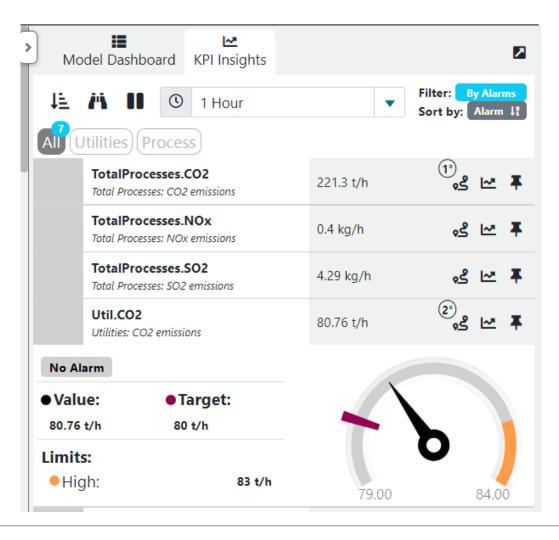
- Daily total GHG Emissions calculation for Scope 1 and 2.
- Daily data reconciliation
- Daily Auditing

GHG Emissions Calculation, Monitoring, Auditing and Reduction


- Real-time energy and GHG emissions calculation for Scope 1 and 2.
- Most Profitable Operation for lowest GHG emission and cost
- Actionable Recommendations to Operations
- Drill-down to identify and troubleshoot sources of problems

Inside Visual MESA GHG Emissions Managements, continuously monitors emissions and energy consumption across the entire plant operation, giving you accurate, real-time data and alert for decision making.

					928	E-TE ESTATE OF THE PERSON NAMED IN				
	(P)	© P	© P	©	© P2	© P	©	O ₍₂₎ G	O ₍₂₎	
	Utilities	Hydrocracking	Distillation	Cracking	Parafins	Special Processes	Flares 2901 A-B	Processes Emissions	Emissions Scope 2	
02 (t/h)	81.43	4.89	47.25	21.07	0.00	0.44	66.98	222.06	4.47	
O (kg/h)	49.65	3.17	28.53	4.62	0.00	0.28	4.64	90.87		
2 (kg/h)	0.00	0.00	0.00	0.00	0.00	0.00	4.29	4,29		
x (kg/h)	0.15	0.01	0.09	0.01	0.00	0.00	0.14	0.40		
P (kg/h)	4.49	0.29	2.58	0.42	0.00	0.02	4.20	12.00		
V (kg/h)	3.25	0.21	1.87	0.30	0.00	0.02	3.04	8.69		



CO

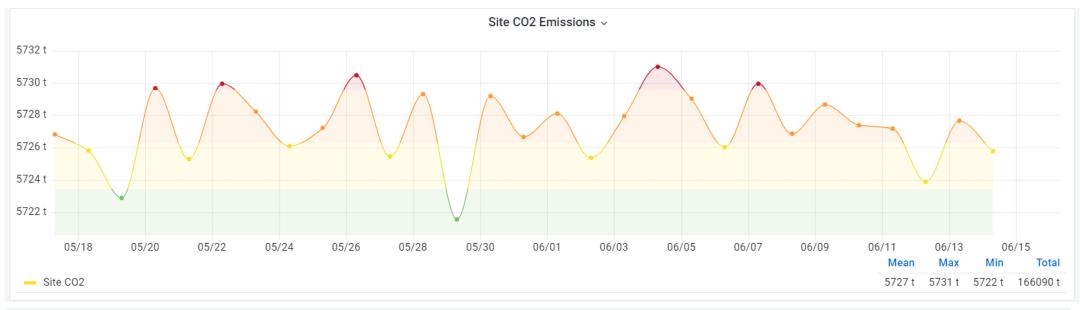
NOx

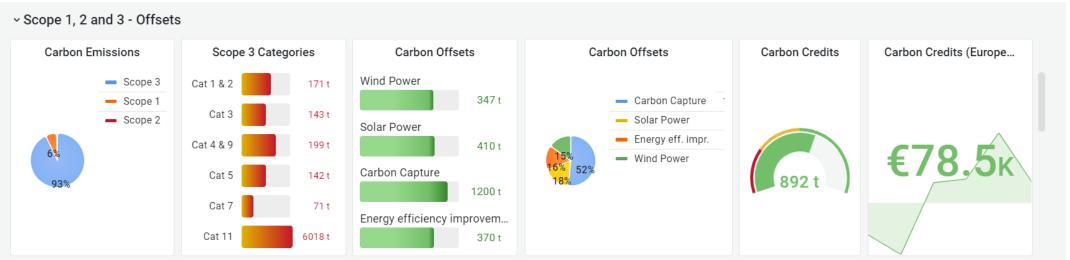
COV

KPI Dashboard & Alarm

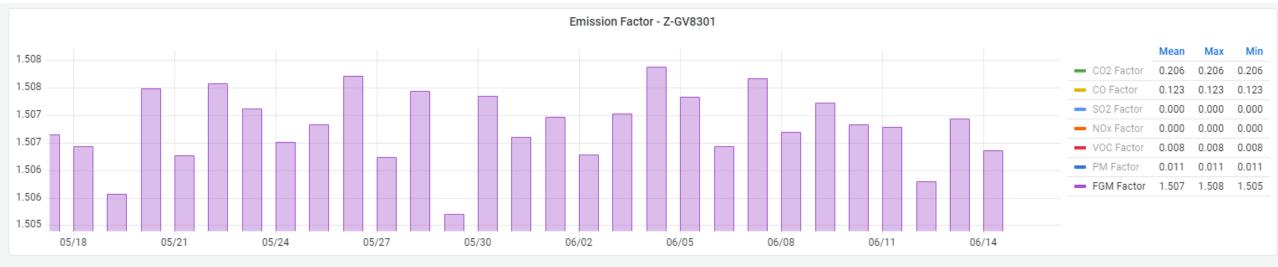
Real-Time Report

Visual MESA GHG Emissions Management Real Time Report

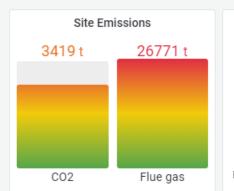


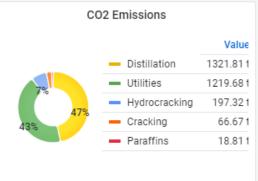

Version 111 Date: 06-13-2024 02:45

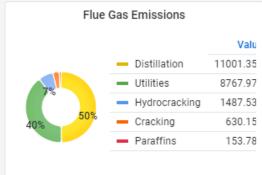
Scope	CO2 (t/h)	CO (kg/h)	SO2 (kg/h)	NOx (kg/h)	COV (kg/h)	MP (kg/h)
Scope 1	221.6	90.6	4.3	0.4	8.7	12.0
Scope 2	4.5					
Total	226.1					

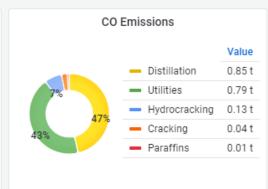

CO2 (t/h)	CO (kg/h)	SO2 (kg/h)	NOx (kg/h)	COV (kg/h)	MP (kg/h)
8.8	5.8	0.0	0.0	0.4	0.5
4.1	2.5	0.0	0.0	0.2	0.2
25.9	15.7	0.0	0.0	1.0	1.4
27.0	16.3	0.0	0.0	1.1	1.5
15.1	9.1	0.0	0.0	0.6	0.8
81.0	49.4	0.0	0.1	3.2	4.5
81.0	49.4	0.0	0.1	3.2	4.5
	8.8 4.1 25.9 27.0 15.1 81.0	8.8 5.8 4.1 2.5 25.9 15.7 27.0 16.3 15.1 9.1 81.0 49.4	8.8 5.8 0.0 4.1 2.5 0.0 25.9 15.7 0.0 27.0 16.3 0.0 15.1 9.1 0.0 81.0 49.4 0.0	8.8 5.8 0.0 0.0 4.1 2.5 0.0 0.0 25.9 15.7 0.0 0.0 27.0 16.3 0.0 0.0 15.1 9.1 0.0 0.0 81.0 49.4 0.0 0.1	8.8 5.8 0.0 0.0 0.4 4.1 2.5 0.0 0.0 0.2 25.9 15.7 0.0 0.0 1.0 27.0 16.3 0.0 0.0 1.1 15.1 9.1 0.0 0.0 0.6 81.0 49.4 0.0 0.1 3.2

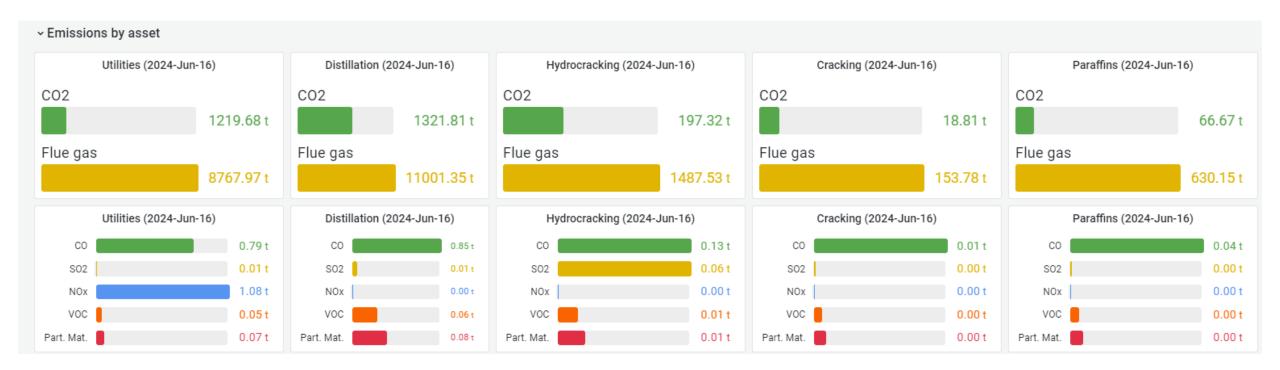
Distillation	CO2 (t/h)	CO (kg/h)	SO2 (kg/h)	NOx (kg/h)	COV (kg/h)	MP (kg/h)
Unit 2						
B201	10.8	6.5	0.0	0.0	0.4	0.6
B202	3.2	2.0	0.0	0.0	0.1	0.2
Total Unit 2	14.1	8.5	0.0	0.0	0.6	0.8
11-24.0						

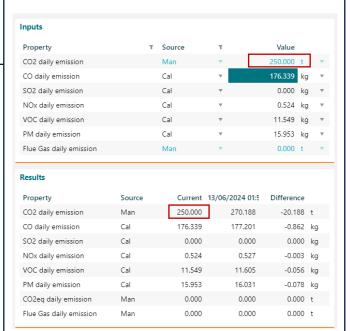




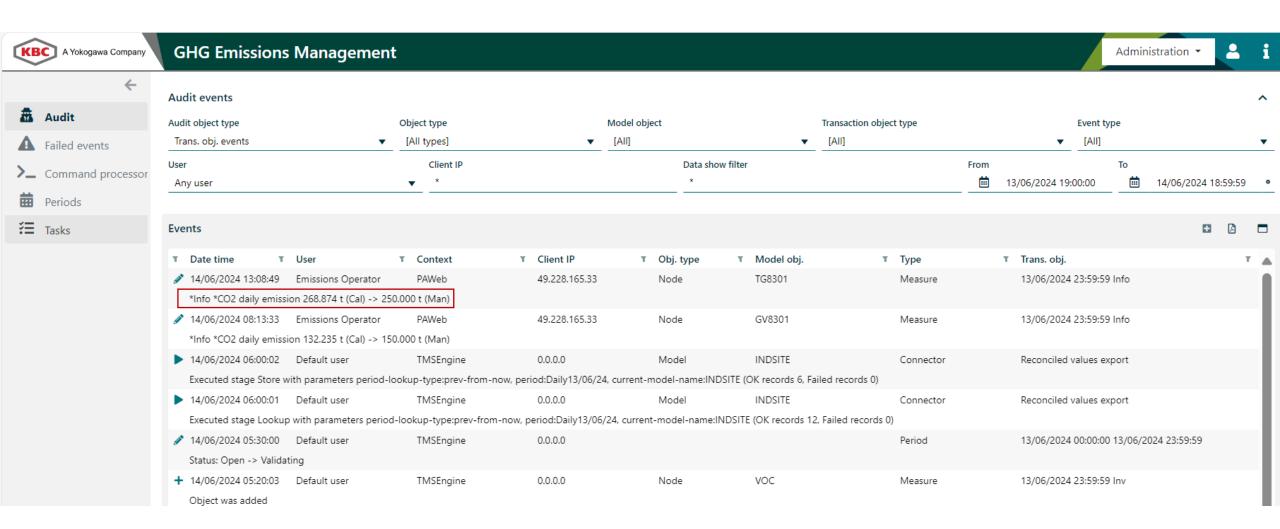


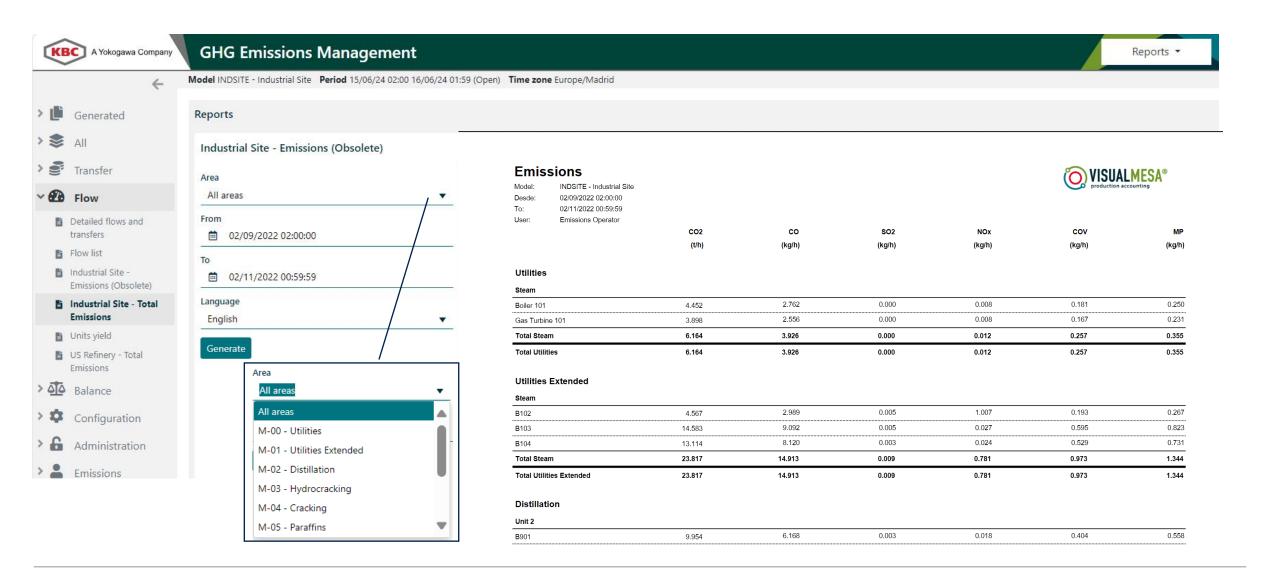

Emissions by type (2024-Jun-16)





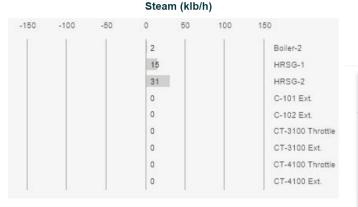
Automated Auditable Reporting

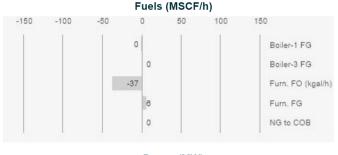

Results								
Date time ▼ 1	т	Node ▲ ²	т	Material	T	User T	Entry date time	T
14/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Emissions Operator	14/06/2024 08:13:3	3
14/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	14/06/2024 05:10:0)2
13/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	13/06/2024 05:10:0)1
13/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	13/06/2024 05:10:0)2
12/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	12/06/2024 05:10:0)1
12/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	12/06/2024 05:10:0)2
11/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	11/06/2024 05:10:0)1
11/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	11/06/2024 05:10:0)2
10/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	10/06/2024 05:10:0)1
10/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	10/06/2024 05:10:0)2
09/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	09/06/2024 05:10:0)2
09/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	09/06/2024 05:10:0)2
08/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	08/06/2024 05:10:0)2
08/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	08/06/2024 05:10:0)3
07/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	07/06/2024 05:10:0)4
07/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	07/06/2024 05:10:0)5
06/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	06/06/2024 05:10:0)1
06/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	06/06/2024 05:10:0)2
05/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	05/06/2024 05:10:0)1
05/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	05/06/2024 05:10:0)2
04/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	04/06/2024 05:10:0)1
04/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	04/06/2024 05:10:0)2
03/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	03/06/2024 05:10:0)1
03/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	03/06/2024 05:10:0)2
02/06/2024 01:59:59)	GV8301 - Boiler 101		FG - Fuel Gas		Default user	02/06/2024 05:10:0)1
02/06/2024 01:59:59)	TG8301 - Gas Turbine 101		NG - Natural Gas		Default user	02/06/2024 05:10:0)2



Automated Auditable Reporting

Automated Auditable Reporting


Actionable Recommendation for Operations


Actionable Items

GOOD SOLUTION - SQP = 3 Last execution: 6/14/2024 4:45:53 AM

Last execution: 6/14/2024 4:45:53 AM				
	Actual	Optimized	Delta	
CO2 Emissions				
Total Site CO2 (klb/h)	433.7	430.7	-2.9	ļ
Boiler Plant				
Boiler-1 FO (klb/h)	2.3	2.0	-0.3	\downarrow
Boiler-2 Coal (klb/h)	7.4	9.5	2.1	1
GTs				
Turbine-1 Electric power (MW)	39.0	27.0	-12.0	\downarrow
HRSG-1 Steam (klb/h)	223.9	239.3	15.4	1
Turbine-2 Power (MW)	39.0	34.5	-4.5	\downarrow
HRSG-2 Steam (klb/h)	228.8	260.1	31.4	1
Re-Gasification Plant Compressors				
BOG C-101 Extraction (klb/h)	113.5	113.5	0.0	=
C-102 Extraction (klb/h)	85.3	85.3	0.0	=
Steam Cracker Compressors				
CT-3100 Throttle (klb/h)	630.9	630.9	0.0	=
CT-3100 Extraction (klb/h)	502.9	502.9	0.0	=
CT-4100 Throttle (klb/h)	210.2	210.2	0.0	=
CT-4100 Extraction (klb/h)	94.2	94.2	0.0	=
Crude Furnace				
FO flow (GAL/HR)	417.7	381.0	-36.8	\downarrow
FG flow (MSCF/h)	99.6	106.0	6.4	1
CO Boiler				
NG to COB (MSCF/h)	14.1	14.1	0.0	=
Turbines and Motors Swaps	Total T/M S	Swaps: 0		
Unit	Driver	Actual Status	Optimized Status	
		Stopped	Punning	

Changes

3	-2	-1	0	1	2	3
	-					Turbine-1
						Turbine-2

Collector Block	Property	Simulation klb/h	Optimum klb/h	Reduction klb/h	Reduction %
Total Site EMI	Carbon Dioxide Mass	433.65	419.46	14.20	3.27

Costs	Simulation \$/h	Full Optimum \$/h	Delta \$/h
Fuel	26176.05	24517.94	1658.11
Power	-738.92	344.43	-1083.35
Others	1649.37	1648.83	0.54
Total	27086.50	26511.20	575.29
Solution Code: 2	good solution: sqp stop due to fraction	IAL CHANGE IN OBJECTIVE FN	Duration (s): 48

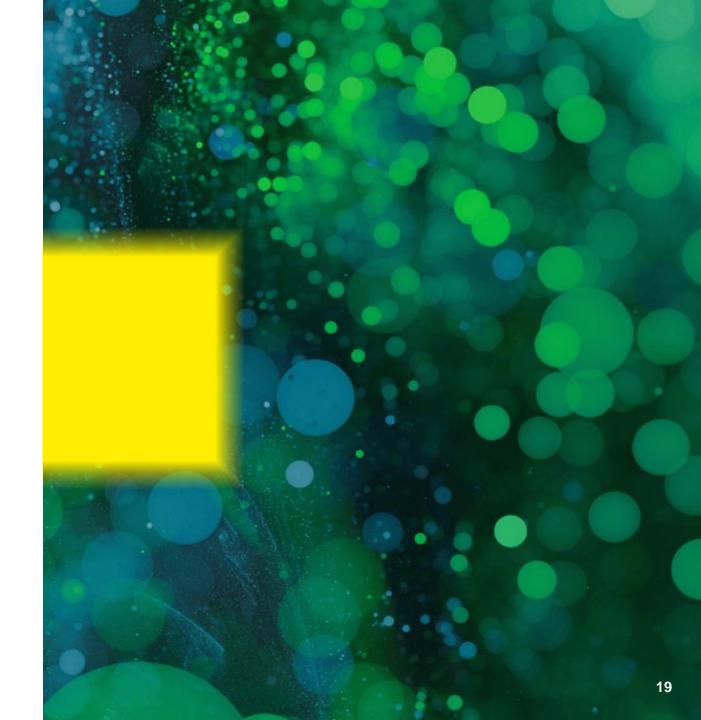
Case Implementation: Acelen Mataripe, Brazil

We are very satisfied with the job performed by KBC on implementing this emissions management solution. The attention to detail and professional support was essential to achieve our goals.

~Brazilian refinery

- With Visual MESA GHG Emissions Management platform, refiners can optimize their operations and reduce emissions by making data-driven decisions. Resulting in:
 - 6% decrease in electricity consumption
 - 268,000 tons reduction in CO₂ emissions
 - 41% reduction in sulfur emissions

Key-Away Messages


Visual MESA GHG Emissions Management

- All-in-one: Monitor, optimize, account, report
- Minimize efforts to produce auditable and compliant emissions reports
- Tackle all required operating and reporting frequencies
- Simultaneously reduce energy costs and increase efficiency, while lowering GHG emissions
- Produce reliable results

Co-innovating tomorrow ™

