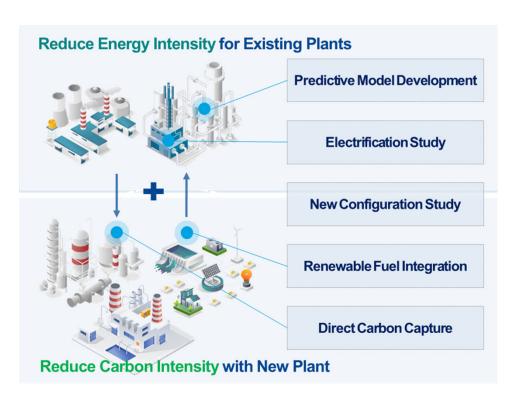
Model Based Energy Optimization

: Decarbonization of Existing Assets



Introduction to Samsung E&A Decarbonization Service Offerings (E&Able)

E&Able helps accelerate business in carbon neutral fields in Energy Transition Era

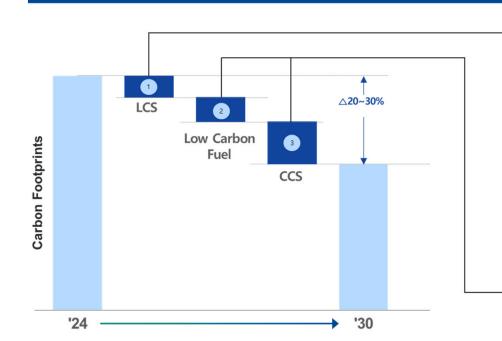
Understand: Business Target & Operating Assets

First, we find the gap between current operations and future decarbonization targets

Review the Client's Decarbonization Plan

Propose the Integrated Low Carbon Solution Study Plan

- · Categorize individual units based on the tiers of energy intensity
- Prioritize the energy saving potentials

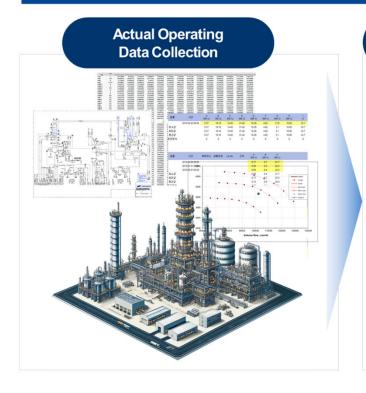

Process	Energy Cost* 10*8 K RW/yr	Saving Potential	
		4	10°8 K RW/y
4	3600	8.0%	280
5	350	10.1%	35
0	300	6.2%	19
0	200	9.9%	20
E	150	10.5%	16
	100	6.3%	6
3	50	7.9%	4
Total	4860	8.2%	380

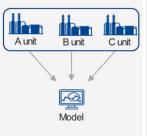
NO.	EMISSION SOURCE	TEMP.	Mass % CO2	CO2 (MTPA)	Priority
1	CDU FURNACE		8.7		
2	HVU FURNACE	0.00	18.67	9.1	3
3	1ST A FURNACE		9.31		3
4	1ST B FURNACE		9.3		3
5	2ND FEED FURNACE		9.3	0.0	3
6	FRAC. FEED FURNACE				
7	REACTOR FURNACE		3.3		3
8	CAD FEED FURNACE		9.3		3
9	VACUUM FURNACE		11.5	0.0	. 3
10	HDS CHARGE HEATER	17%	19.3	0.0	3
11	HDT CHARGE HEATER	17%	19.3	0.0	3
12	HMU SMR	- 14	3.85	1.3	
13	HMU SMR	86	3.8	* *	

• Plan based on Priority which accounts for Upcoming Turn Around

Developing/Investing in Emerging Technologies

 Pursue partnership and joint development with CCS operator & low carbon fuel producers


"1 or 2 Major Turn Arounds Remained"


Optimize Local: Model-Based Energy Optimization

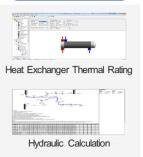
Predictive Simulation Model is the key kickoff to investigate conceptual ideas

Predictive Model Creation Work Flow

Plant-Wise Modeling

- Site-wise Analysis to Prevent the Balloon Effect
- Skills and Knowledge of Process Simulation

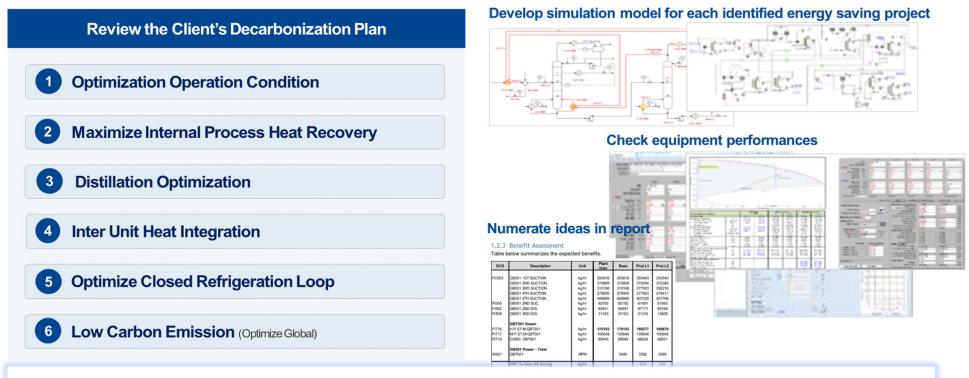
Accurate Simulation


- 1st principle model accounting for complex process interactions
- Tuned to Actual Operation Data

Prudent Analysis

- Specialist with more than 30 years of Experience
- Ideation based on Track Records

Competent Engineering



- Seamless Engineering Capability
- Successful Precedents of Brownfield Project Execution

Optimize Local: Model-Based Energy Optimization

Energy Saving Ideas derive from Pinch Analysis

More than 400,000 tons of CO₂ reduction achieved through successfully executing more than 10 projects