

Magcat Reforming catalysts Technology

Do You want to reduce CO2?

Himanshu Chauhan

Regional Sales Mgr. APAC

UNICAT CATALYST TECHNOLOGIES

Himanshu.Chauhan@unicatcatalyst.com

+919540856574

Company Info

- UNICAT was formed in 2000
- White Deer Energy (Multi-billion-dollar US company) purchased UNICAT in 2020
- UNICAT bought Magma Group in 2021 (Our Dewsbury UNICAT Catalyst UK site)
- UNICAT opened new catalyst plant in Vietnam in 2023
- UNICAT is currently constructing a catalyst plant in the US in 2024

General Information

Owned by White Deer Energy A multi Billion Dollar Private Equity Firm R & D Facilities **UNICAT** Facilities in Baytown TX, Merryville TN, Dewsbury **UK and Dalian PRC** Sales & Service Offices located in Houston, Chicago, Amsterdam, Brussels, Barcelona, Aruba, Dubai, London Ontario, and Dalian Specialty catalysts New JV Vanguard Catalyst LLC with a Manufacturing plant in the USA

Sales

UNICAT has grown tremendously since being formed in 2000.

Customer Base

> 700 Industrial references throughout the USA, Europe, South America and Middle and East Asia

Service

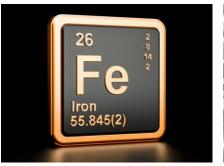
Knowledgeable Engineers able to provide on site service to customers

ISO Certified

ISO-14001 & 9001 production sites in Asia, UK and the USA

Industries

We span a range of industries


- Refineries
- Petrochemical Plants
- Ammonia Production
- Iron-DRI
- Oil & Gas Processing
- Hydrogen
- Methanol Production

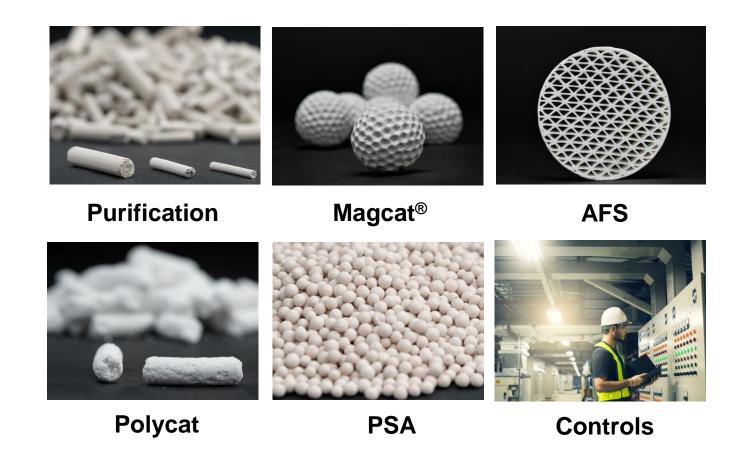

AMMONIA

HYDROGEN

IRON-DRI

METHANOL PRODUCTION

OIL & GAS


PETROCHEMICALS

Product Range

Our Major Product Ranges:

- Purification
- Synthesis gas Production, including Magcat[®]
- AFS Advanced Filtration
 System Disks
- Polycat
- PSA
- Control Systems

Company Overview

Products

Control panels

PLC systems

SCADA systems Kilns

Motor control centres PSA systems

Instrumentation Distribution switchboards

Combustion Equipment Safety systems

Hazardous area/ATEX rated panels

Gas Skids

Furnaces

Burners

Location

Based in Huddersfield in the UK, Magma provides products and services to a worldwide customer base.

Aim

To provide high quality systems to our customers with the very best levels of service.

200+ **CLIENTS**

46 **EMPLOYEES**

Select Unicat Customers

Phillips 66

Valero

Marathon

Chevron

HollyFrontier Sinclair

Shell

Exxon Mobil

Motiva

Flint Hills

Suncor

BP

Air Products

Citgo

Calumet

Statoil

Repsol

Total

Nutrien

Koch Industries

LSB Industries

CF Industries

BOC Linde

Slovnaft (MOL Group)

HollyFrontier

Pertamina Oil

Petrorin Sabic

Farmland

Yara

Unipetrol

Irving Oil

Giant Refining

SunOil Refining

Cross Oil ENI Group

PCS

Saudi Aramco

Qafac

Nippon Group

Cargill

Nippon Oil

PKN Orlen

ADM

AGP Refining

PIC Kuwait

Qafac MEOH

AGP Refining Krakatau Steel

Arcelor Mittal

Slavnaft

Gazprom

Lukoil

Kuwait Oil

Hanwha Total/Chemical

SK Energy

Mozyr S-Oil

Gazprom

PTT Thailand

Bangchack Refinery

Equinor Satorp Cepsa

Organisation – management / product development 🌠 [[N][[A]

Mark Stuckey - CEO

Oversaw buyout from Dyson Precision Ceramics and since we have enjoyed continual and significant growth. We have three divisions, notably Ceramics, Catalysts and Combustion and operate worldwide from our facilities in the UK & Vietnam.

Gary Bennington – Regional Sales Director APAC

30 years of experience within the syngas catalyst (ICI/Johnson Matthey), chemical & steel industries, has included sales, technical, marketing and business development.

Chris Pesek - Global Sales Director 30 years+ global sales experience with leading companies - Albermarle, Johnson Matthey e.t.c

Himanshu Chauhan Regional Bus. Dev. Mgr. APAC.

A Chemical Engineer with over 16 years of experience with leading catalyst technology companies (JM. Topsoe) in technical and commercial roles in the syngas industry. Experience in catalyst operation, troubleshooting, and chemistry for Hydrogen, Ammonia, and Syn. Gas plants.

K. R Rama Kumar – Technical Sales Manager

Over 18 years of experience in Technical Services and Refinery/Ammonia/Hydrogen/petrochemical catalysts. Involved in multiple plant commissioning and troubleshooting for various catalyst worldwide.

James Esteban Sr. Tech. Mgr.

A Chemical Engineer with more than 9 years of direct refinery experience with Suncor. He also gained a strong background in catalyst technologies during his time with Criterion Catalysts and Technologies and later built on that experience through offering technical support with Refined Technologies (RTI).

Team - Asia Pacific

30 years of experience within the syngas catalyst (ICI/Johnson Matthey), chemical & steel industries, has included sales, technical, marketing and business development. Based out of Australia
Syn. Gas Expert

Himanshu Chauhan Regional Bus. Dev. Mgr. APAC.

A Chemical Engineer with over 16 years of experience with leading catalyst technology companies(JM, Topsoe) in technical and commercial roles in the syngas industry. Experience in catalyst operation, troubleshooting, and chemistry for Hydrogen, Ammonia, and Syn. Gas plants. Based out of India

Syn. Gas Expert

Paresh Amin— Technical Sales Manager APAC
Over 39 years of operations, Technical Sales and
services Experience across petroleum refineries and
catalyst companies. Based out of India
FCC/Refineries Expert

Bong Ngugen- Technical Sales Manager APAC

15 years of process plant experience in Oil refinery in operations and technical services. Based out of Vietnam PSA, Refineries Expert

Andreas Mak – Technical Sales Manager APAC
Over 30 years of operations, Technical Sales and
services Experience. Based out of Indonesia
Ceramics Expert

Ashutosh Patil—Supply Chain officer /Chemical Engineer APAC

Over 10 years of operations, production and technical services Experience. Based out of India

Local Business Partner Plus Exploration in Thailand

Syn. Gas Hydrogen

Fuel (NG + Off gas from Plant)

Feed Natural Gas/ Naphtha

Hydrogen Mfg. Process

 $CH4 + 2H2O \rightleftharpoons CO2 + 4 H2$


Hydrogen

Reformer is the heart

Steam

Syn. Gas Ammonia

Feed Natural Gas/ Naphtha

Feed Air

Ammonia Mfg. Process

 $CH4 + 2H2O \rightleftharpoons CO2 + 4 H2$

 $3H2 + N2 \rightleftharpoons 2NH3$

Ammonia

Reformer is the heart

Steam

Syn. Gas Methanol

Fuel (NG + Off gas from Plant)

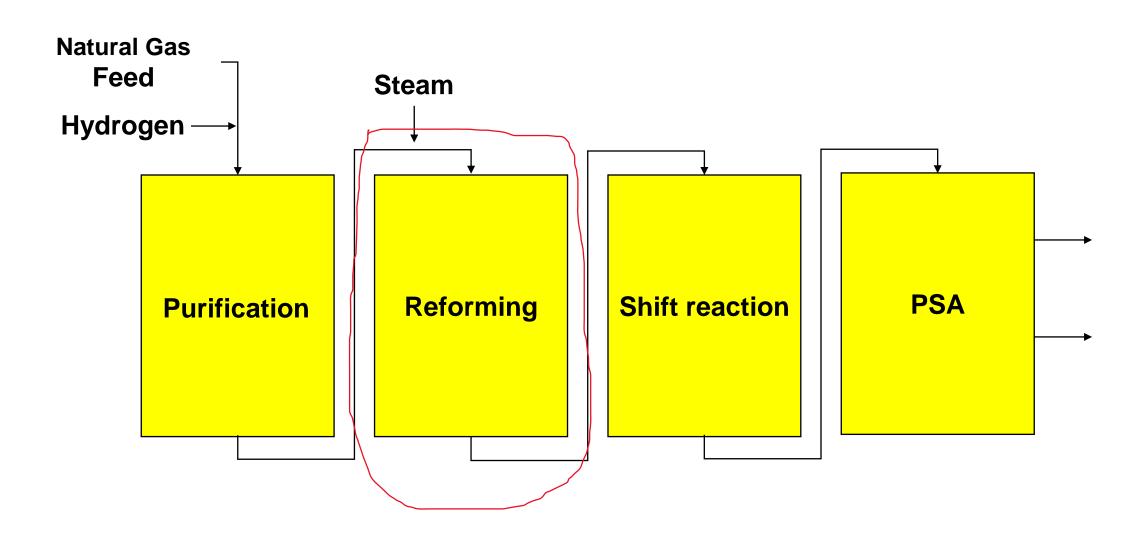
Feed Natural Gas

Methanol Mfg. Process

 $CH4 + 2H2O \rightleftharpoons CO2 + 4 H2$

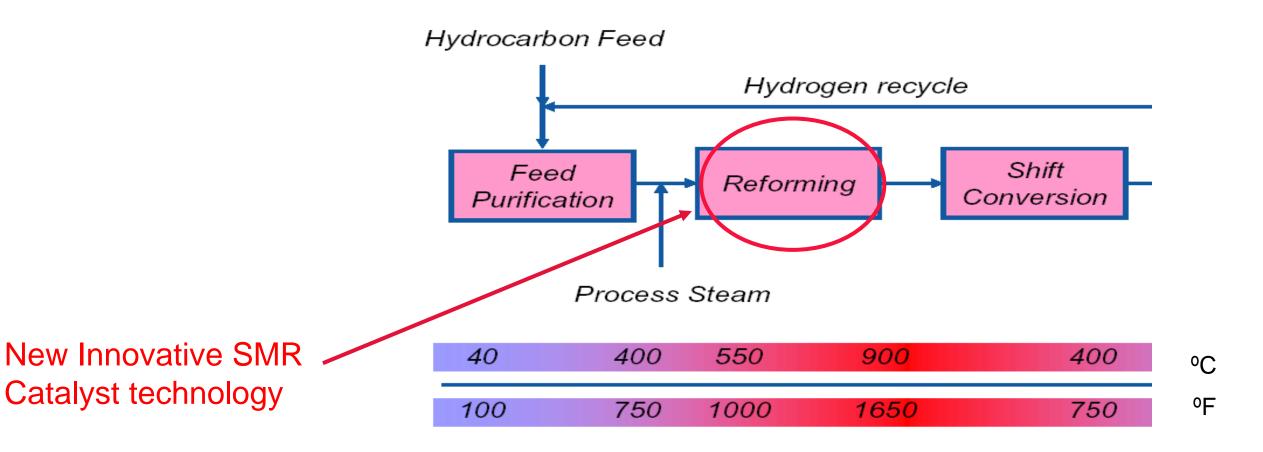
 $CO + 2H2 \rightleftharpoons CH3OH$

 $CO2 + 3H2 \rightleftharpoons CH3OH + H2O$


Methanol

Reformer is the heart

Steam


Simplified Block Diagram of a Hydrogen Plant

Magcat Technology

Magcat production Site- England

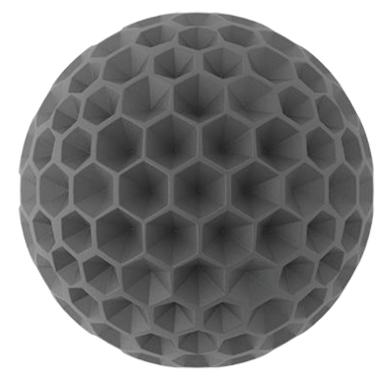
- Site manufacturers Catalysts, Ceramics & Combustion equipment
- 25,000 m² of manufacturing space.
- Plant expansion to 10 Tonnes/day since 1st May 2022
- 2010 (24 employees) 2023 (>300 employees)
- Merged with UNICAT in February 2021

Catalysts in >40 commercial tubular reformers (>1600 tubes). Performing well, repeat orders received.

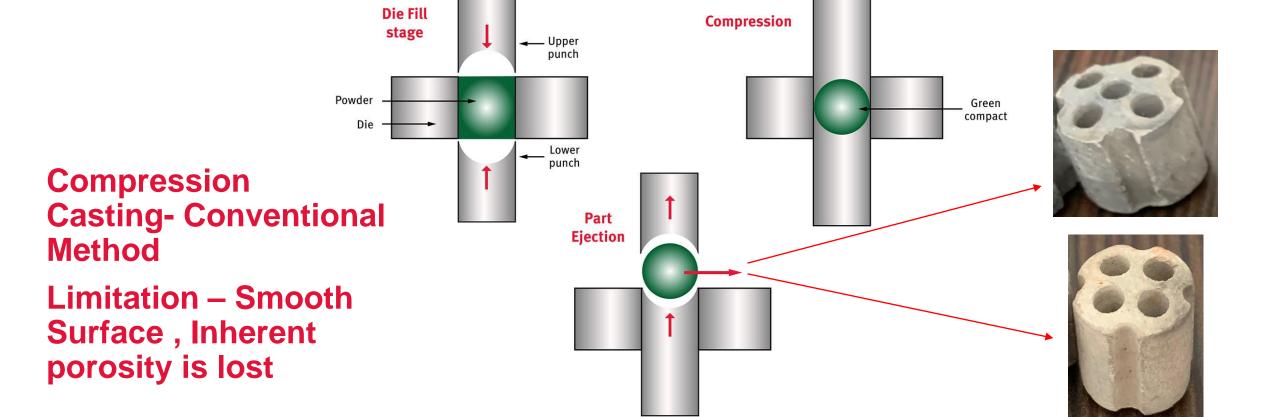
Conventional Shape

Conventional cylindrical shaped Reforming catalyst is being used in the industry for last 50 years...

What next?

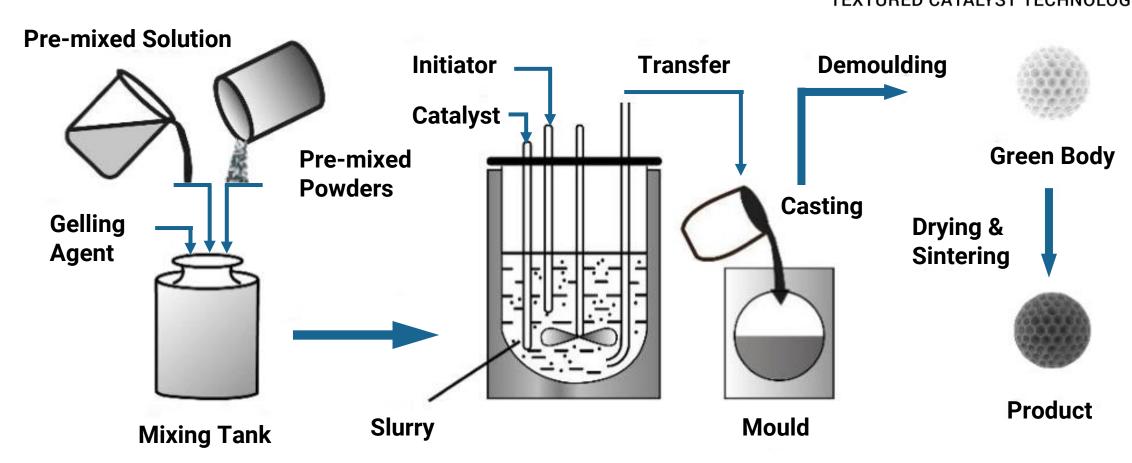

New Shape

Unicat Magma have come up with the latest innovation in

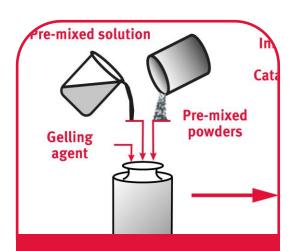

reforming catalyst

New Textured Spheres

Conventional casting process

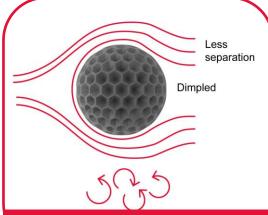


Magcat[®] Production Process


Gel Casting



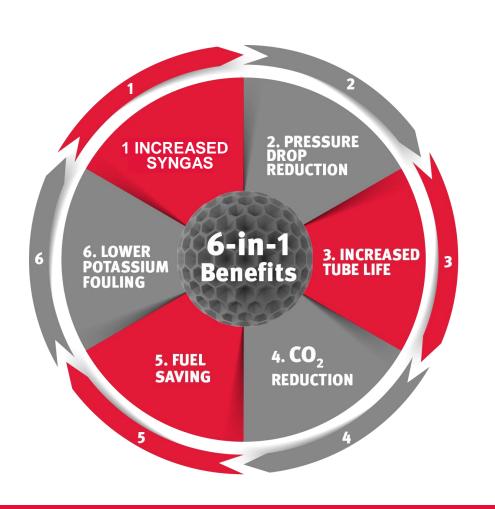
How Magcat is different



Gel Casting

- Porosity
- Inherent Strength

Shape


- Uniform Distribution
- Uniform Loading

Texturing

- Heat Transfer
- High Activity
- Low Delta P

6-in-1 Benefits of Textured Spheres

- 1. Increased Syngas/H2
- 2. Pressure Drop Reduction Lower for Longer
- 3. Increased Tube Life +40%
- 4. CO₂ Reduction
- 5. Fuel Saving
- 6. Lower Potassium Fouling

Huge \$ Savings for the Reformer operator!

CO2 Reduction- Higher Heat Transfer

Higher Heat Transfer

Less firing of fuel / Natural Gas per MT of H2 Product

Less firing lead to less CO2 production in flue gas

CO₂ Reduction

CO2 Reduction- Higher reforming activity

Higher Reforming Activity

Lower Feed consumption SOR to EOR per MT of H2

Less CO2 exit reformer per MT of H2 product

CO₂ Reduction

CO2 Reduction

MAGCAT Technology CO2 Reduction

Higher Efficiency

Lower Feed+ fuel consumption per unit H2 make

Lower CO2 Emissions per Unit H2 Production

SOR Performance Magcat

*** PRIMARY REFORMER ***											
*** PERFORMANCE MODE ***			COMP								
			0	***	* MOLE FRA	ACTIONS *	**	MASS FL	OW RATE	MOLAR FL	OW RATE
1-FUEL FLOW RATE	NM3/SEC	3.3803	NENT	(WET I	BASIS)	(DRY	BASIS)	K	S/S	KGM	OL/S
				INLET	OUTLET	INLET	OUTLET	INLET	OUTLET	INLET	OUTLET
2-FIRING RATE(FUEL*LHV)	MW	91.298									
			CO	0.0011	0.0592	0.0045	0.1069	0.051	3.295	0.0018	0.1176
3-TOTAL HEAT INPUT(FIRING+SENSIBLE)	MW	91.464	CO2	0.0265	0.0650	0.1040	0.1175	1.846	5.690	0.0420	0.1293
			H2	0.0730	0.4085	0.2862	0.7383	0.233	1.638	0.1155	0.8123
4-HEAT LOSSES THROUGH WALLS AND OPENING	MW	2.2329	CH4	0.1543	0.0206	0.6053	0.0373	3.917	0.658	0.2442	0.0410
F FIDEROV FEFICIENCY/FIDING DATE DAGIC)	PERCENT	66.062	C2H6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
5-FIREBOX EFFICIENCY(FIRING RATE BASIS)	PERCENT	00.002	C3H8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
6-TOTAL FLUE GASES FLOW	KG/S	34.6	C4	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			C5	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
7-FLUE GAS TEMP AT FIREBOX EXIT	DEG C	734.19	C6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			C7	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
8-TOTAL HEAT ABSORBED	MW	60.313	C8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			C9	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
9-PROCESS TEMPERATURE(INLET/OUTLET)	DEG C	573.5/ 812.5	C10	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
40 2200 2200 2200 2200 200 200 200 200 2	1/54		Cx	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
10-PROCESS PRESSURE (INLET/OUTLET)	KPA	2340.7/2207.0	N2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
11-MAX OUTSIDE TUBE WALL TEMPERATURE	DEG C	855.99	O2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
THE TOTAL TOTAL TENT ENTROPE	2200	000.00	ARGN	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
12-STEAM TO CARBON MOLE RATIO (AT INLET)		4.8271	H2O	0.7450	0.4467			21.236	16.003	1.1787	0.8882
13-CALCULATED METHANE LEAKAGE - DRY MOL	PERCENT	3.7292					TOTAL	27.284	27.284	1.5822	1.9885

EOR Performance Magcat

*** PRIMARY REFORMER ***											
*** PERFORMANCE MODE ***			COMP O	**:	** MOLE FRA	ACTIONS ***	**	MASS FLO	OW RATE	MOLAR FL	OW RATE
1-FUEL FLOW RATE	NM3/SEC	3.3344	NENT	(WET E	BASIS)	(DRY I	BASIS)	KG	G/S	KGM	OL/S
	6, 5 = 5	0.00		INLET	OUTLET	INLET	OUTLET	INLET	OUTLET	INLET	OUTLET
2-FIRING RATE(FUEL*LHV)	MW	90.056									
			СО	0.0011	0.0575	0.0045	0.1049	0.051	3.185	0.0018	0.1137
3-TOTAL HEAT INPUT(FIRING+SENSIBLE)	MW	90.105	CO2	0.0265	0.0648	0.1040	0.1183	1.846	5.646	0.0420	0.1283
			H2	0.0730	0.4026	0.2862	0.7345	0.233	1.606	0.1155	0.7965
4-HEAT LOSSES THROUGH WALLS AND OPENING	MW	2.2400	CH4	0.1543	0.0232	0.6053	0.0424	3.917	0.737	0.2442	0.0460
5-FIREBOX EFFICIENCY(FIRING RATE BASIS)	PERCENT	65.773	C2H6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
of inceson and incident and incident and incident	LICENT	00.770	C3H8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
6-TOTAL FLUE GASES FLOW	KG/S	34.1	C4	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			C5	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
7-FLUE GAS TEMP AT FIREBOX EXIT	DEG C	736.92	C6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			C7	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
8-TOTAL HEAT ABSORBED	MW	59.232	C8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
9-PROCESS TEMPERATURE(INLET/OUTLET)	DEG C	573.5/ 812.5	C9	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
9-PROCESS TEMPERATURE(INLET/OUTLET)	DEG C	573.5/ 612.5	C10	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
10-PROCESS PRESSURE (INLET/OUTLET)	KPA	2363.8/2206.9	Сх	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			N2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
11-MAX OUTSIDE TUBE WALL TEMPERATURE	DEG C	856.24	O2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			ARGN	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
12-STEAM TO CARBON MOLE RATIO (AT INLET)		4.8271	H2O	0.7450	0.4519			21.236	16.109	1.1787	0.8942
	DED 05115	1									
13-CALCULATED METHANE LEAKAGE - DRY MOL	PERCENT	4.2371					TOTAL	27.284	27.284	1.5822	1.9786

SOR Performance Competition catalyst

*** PRIMARY REFORMER ***											
*** PERFORMANCE MODE ***			COMP	***	* MOLE FRA	CTIONS **	**	MASS FLO	OW RATE	MOLAR FL	OW RATE
1-FUEL FLOW RATE	NM3/SEC	3.4049	NENT	(WET I	BASIS)	(DRY I	BASIS)	KG	s/S	KGM	OL/S
		51.10.10		INLET	OUTLET	INLET	OUTLET	INLET	OUTLET	INLET	OUTLE
2-FIRING RATE(FUEL*LHV)	MW	91.962									
			СО	0.0011	0.0591	0.0045	0.1069	0.051	3.294	0.0018	0.1170
3-TOTAL HEAT INPUT(FIRING+SENSIBLE)	MW	92.130	CO2	0.0265	0.0650	0.1040	0.1175	1.846	5.690	0.0420	0.129
4-HEAT LOSSES THROUGH WALLS AND OPENING	MW	2.2589	VH2	0.0730	0.4084	0.2862	0.7382	0.233	1.637	0.1155	0.812
4-HEAT LOSSES THROUGH WALLS AND OPENING	IVIVV	2.2509	CH4	0.1543	0.0207	0.6053	0.0373	3.917	0.659	0.2442	0.041
5-FIREBOX EFFICIENCY(FIRING RATE BASIS)	PERCENT	65.576	C2H6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
	-		C3H8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
6-TOTAL FLUE GASES FLOW	KG/S	34.9	C4	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
			C5	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
7-FLUE GAS TEMP AT FIREBOX EXIT	DEG C	743.58	C6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
O TOTAL LIFAT ADOODDED	B 41.07	00.005	C7	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
8-TOTAL HEAT ABSORBED	MW	60.305	C8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
9-PROCESS TEMPERATURE(INLET/OUTLET)	DEG C	573.5/ 812.5	C9	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
or Rootes Telm Electronic (INCE 1700 TEET)	2200	070.07012.0	C10	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
10-PROCESS PRESSURE (INLET/OUTLET)	KPA	2370.0/2207.1	Cx	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			N2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
11-MAX OUTSIDE TUBE WALL TEMPERATURE	DEG C	869.14	O2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
			ARGN	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000
12-STEAM TO CARBON MOLE RATIO (AT INLET)		4.8271	H2O	0.7450	0.4467			21.236	16.004	1.1787	0.8883
13-CALCULATED METHANE LEAKAGE - DRY MOL	PERCENT	3.7340									
13-CALCULATED WETHANE LEARAGE - DRT WOL	FERCEIVI	3.7340					TOTAL	27.284	27.284	1.5822	1.9884

EOR Performance Competition catalyst

*** PRIMARY REFORMER ***											
*** PERFORMANCE MODE ***			COMP O	**	* MOLE FRA	CTIONS **	**	MASS FLO)W RATE	MOLAR FL	OW RATE
1-FUEL FLOW RATE	NM3/SEC	3.3093	NENT	(WET			BASIS)	KG		KGM	
1-FUEL FLOW RATE	NIVI3/SEC	3.3093	INCINI	INLET	OUTLET	INLET	OUTLET	INLET	OUTLET	INLET	OUTLE
2-FIRING RATE(FUEL*LHV)	MW	89.378									
			СО	0.0011	0.0559	0.0045	0.1029	0.051	3.085	0.0018	0.110
3-TOTAL HEAT INPUT(FIRING+SENSIBLE)	MW	89.426	CO2	0.0265	0.0647	0.1040	0.1190	1.846	5.604	0.0420	0.127
A LIEAT LOOGES TURQUIQUIAVALLO AND ORENINO	B 43 A /	0.0704	H2	0.0730	0.3970	0.2862	0.7309	0.233	1.576	0.1155	0.782
4-HEAT LOSSES THROUGH WALLS AND OPENING	MW	2.2704	CH4	0.1543	0.0256	0.6053	0.0472	3.917	0.810	0.2442	0.050
5-FIREBOX EFFICIENCY(FIRING RATE BASIS)	PERCENT	65.175	C2H6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
			C3H8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
6-TOTAL FLUE GASES FLOW	KG/S	33.9	C4	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
			C5	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
7-FLUE GAS TEMP AT FIREBOX EXIT	DEG C	748.18	C6	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
O TOTAL LIEAT ADOODDED	B 43 A /	50.050	C7	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
8-TOTAL HEAT ABSORBED	MW	58.252	C8	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
9-PROCESS TEMPERATURE(INLET/OUTLET)	DEG C	573.5/ 812.5	C9	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
THOUSE PENN ENVIONE (INCENTION FEET)	BLOO	070.07012.0	C10	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
10-PROCESS PRESSURE (INLET/OUTLET)	KPA	2449.4/2207.1	Сх	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
			N2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
11-MAX OUTSIDE TUBE WALL TEMPERATURE	DEG C	869.76	O2	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
AS OFFICIAL TO CARROLLING F RATIO (AT III II T		4.0074	ARGN	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.000
12-STEAM TO CARBON MOLE RATIO (AT INLET)		4.8271	H2O	0.7450	0.4568			21.236	16.208	1.1787	0.899
13-CALCULATED METHANE LEAKAGE - DRY MOL	PERCENT	4.7186									
13 OALOGEATED WETTANE LEARNOE - DRT WOL	LINGLINI	4.7100					TOTAL	27.284	27.284	1.5822	1.969

Magcat Technology Higher Efficiency

	MAGCAT									
	Feed Nm3 /sec	Fuel / Nm3 of H2								
SOR	9.044049	3.3803	18.2069	0.4967	0.1857					
EOR	9.044049	3.3344	17.8528	0.5066	0.1868					
		Conven	tional cataly:	st						
	Feed Nm3 /sec	FUELNM3/SEC	H2 prod. Ref. exit Nm3/sec	Feed / Nm3 of H2	Fuel / Nm3 of H2					
SOR	9.044049	3.4049	18.2024	0.4969	0.1871					
EOR	9.044049	3.3093	17.5278	0.5160	0.1888					

Feed means - Inlet gas to reformer without Steam

Table was prepared Basis Data from slides 3-6

Magcat Technology Higher Efficiency

Benefit of Magcat Technology							
SOR (fuel reduction per Nm3 of H2)	0.00140						
EOR (Fuel reduction per Nm3 of H2)	0.00203						
SOR (Feed Reduction per Nm3 H2)	0.00012						
EOR (Feed reduction per Nm3 H2)	0.00939						

CO2 Reduction Higher Heat Transfer- lower Fuel

	Average Fuel reduction per Nm3 of H2 (SOR to EOR)	0.0017		H2 exit reformer	65000	NM3/hr			
	Fuel saved per hr	111	NM3						
	Fuel saved per year	924780	NM3	C no. of Make up fuel gas is 0.69; it means 1 NM3 phour of fuel has 0.69 NM3 of Carbon.					
CO2 Emissions	CO2 Emmissions saved per year	638099	NM3	1 NM3 per hour of fuel gas combustion produces 0.69 NM3/hr of CO2.					
Reduction- basis lower	life cycle of catalyst	5104788	NM3	Catalyst life	8	year			
fuel rate	CO2 Emissions saved per year	1253	Ton	C credit pr ton	65	USD			
SOR to EOR	CO2 Emissions saved full life cycle of catalyst	10021	Ton						
	CO2 Emissions Benefit per year	81421	USD						
	CO2 Emissions benefit full life cycle of catalyst	651365	USD						

CO2 Reduction Basis Higher Activity Lower Feed

CO2 Production Process Side across Reformer

Reformer Inlet feed	Unit	Reformer Exit CO2	Unit
0.4035	kgmole per sec feed	0.1233	kgmole per sec CO2
1	kgmole per sec feed	1 1 3 7 1 1 1	kgmole per sec CO2
1	NM3/sec feed	0.3204	NM3/sec CO2

CO2 Production Process Side basis CO conversion across Shift (70 % conversion assumed)

Sint (76 % conversion assumed)							
Reformer Inlet feed	Unit	Reformer Exit CO/CO2	Unit				
0.4035	kgmole per sec feed	() 1176	kgmole per sec CO				
1	kgmole per sec feed	() 2914	kgmole per sec CO				
1	NM3/sec feed	0.2914	NM3/sec CO				
1	1 NM3/sec feed		NM3/sec CO2 Shift Exit				

Total CO2 Production Process Side (Reformer + Shift catalyst)

Reformer Inlet feed	Unit	Reformer + Shift Exit CO2	Unit
1	NM3/sec feed	0.5245	NM3/sec CO2

Basis Data from Slide 3

CO2 Reduction Higher Activity – Lower Feed

CO2 Emissions					
Reduction-					
basis lower					
Feed rate SOR					
to EOR					

	Average Feed reduction per Nm3 of H2 (SOR to EOR)	0.0048		H2 Plant Exit reformer	65000	NM3/hr			
	Feed saved per hr	309	NM3	Feed means - Inlet gas to reformer without Steam					
	Feed saved per year	2566803	NM3	1 NM3 of feed gas produce 0.5245 NM3 of CO2 in process side.					
	CO2 Emmissions								
	saved per year from	1346188	NM3						
	process gas								
	CO2 Emissions saved								
	full life cycle of	10769503	NM3	Catalyst life	8	year			
	catalyst			·		-			
	CO2 Emissions saved	2643	Ton	C cradit ar tan	65	USD			
	per year	2043	1011	C credit pr ton	65	บวบ			
	CO2 Emissions saved								
	full life cycle of	21141	Ton						
	catalyst								
	CO2 Emissions Benefit	171772	USD						
	per year	1/1//2	030						
	CO2 Emissions benefit								
	full life cycle of	1374176	USD						
	catalyst								

CO2 Reduction Basis Lower feed + Fuel

Magcat - Total CO2 Reduction									
CO2 Emission reduction per year basis lower feed	2643	Tons	8 years catalyst life						
CO2 Emission reduction per year basis Lower fuel	1253	Tons							
Total CO2 Emmission reduction per year	3895	Tons			T				
CO2 Emission reduction full catalyst cycle life basis lower feed	21141	Tons	C Credit value	65	USD per ton				
CO2 Emmission reduction full catalyst cycle life basis lower feed	10021	Tons							
Total CO2 Emission reduction full catalyst cycle life	31162	Tons							
Total CO2 Emission Benefit per year	253193	USD							
Total CO2 Emission reduction Benefit Full catalyst cycle life	2025541	USD							

References

Customer	Plant	Country	# of tubes	Start up
Phillips 66	Ponca City (2 units)	USA	88	Jun-19
Marathon	St Paul Park (2 units)	USA	80	Sep-19
DRI Site	Confidential	USA	5	Sep-19
Confidential	Busan	South Korea	24	Feb-20
Marathon	Dickinson	USA	36	Dec-20
MIDREX	VoestAlpine	USA	5	Dec-20
Confidential	Daejon	South Korea	20	Feb-21
Confidential	Busan (10 Fuel Cell Units)	South Korea	10	Feb-21
Phillips 66	Wood River	USA	192	Apr-21
US Top 5 Refiner	US Mid-West	USA	216	Jul-21
Calumet	Montana	USA	92	Nov-21
Phillips 66	Billings (2 units)	USA	144	Jan-22

References

Customer	Plant	Country	# of tubes	Start up
Pan American	Existing H2	Columbia	8	Nov-22
Neste	Jurong Island	Singapore	114	Mar-23
Calumet	Montana (New Build)	USA	48	Jan-23
Calumet	Louisiana	USA	40	Mar-23
UPM	Kymmene	Finland	31	Apr-23
Jaxon Energy	Jackson MS	USA	30	May-23
Flint Hills Refinery	Pine Bend, MN	USA	216	May-23
CHS (#2 Plant)	Laurel Refinery, MT	USA	48	Jul-23
CHS (#3 Plant)	Laurel Refinery, MT	USA	144	Sep-23
Air Products Inc	Confidential	USA	36	Sep-23
Air Liquide	Antwerp	Belgium	144	March-24
Evonik	H2 Plant	Indonesia	10	Oct-23
Pupuk Kalimantan	NH3 Plant, Timor	Indonesia	240	Nov-23
Solvay Chemicals	Longivew, WA	USA	44	Dec-23
NIS Pancevo	H2 Plant	Serbia	232	Mar-24
ADNOC	Refinery	UAE	208	Apr-24
ArcelorMittal	Midrex DRI	Canada	180	Jun-24
BP Gelsenkirchen	Refinery	Germany	102	Sep-24

Overall Benefits to Clients

- Higher Efficiency Lower Feed + Fuel SOR to EOR
- CO2 Reduction
- Higher Guaranteed Life
- Possibility of higher H2 production if needed
- No need of DENSE loading thus saving in cost and time

THANKS

Himanshu Chauhan
Regional Sales Mgr. APAC
UNICAT CATALYST TECHNOLOGIES
Himanshu.Chauhan@unicatcatalyst.com
+919540856574