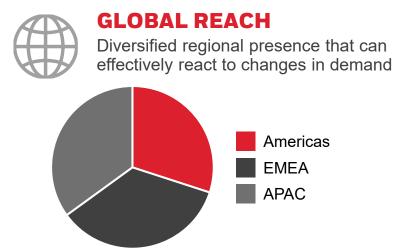
HONEYWELL UOP EFFORTS ON SUSTAINABLE AND LOW CARBON SOLUTIONS

FORWARD LOOKING STATEMENTS

This presentation contains certain statements that may be deemed "forward-looking statements" within the meaning of Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, that address activities, events or developments that we or our management intends, expects, projects, believes or anticipates will or may occur in the future are forward-looking statements. Such statements are based upon certain assumptions and assessments made by our management in light of their experience and their perception of historical trends, current economic and industry conditions, expected future developments and other factors they believe to be appropriate. The forward-looking statements included in this presentation are also subject to a number of material risks and uncertainties, including but not limited to economic, competitive, governmental, technological, and COVID-19 public health factors affecting our operations, markets, products, services and prices. Such forward-looking statements are not guarantees of future performance, and actual results, and other developments, including the potential impact of the COVID-19 pandemic, and business decisions may differ from those envisaged by such forwardlooking statements. Any forward-looking plans described herein are not final and may be modified or abandoned at any time. We identify the principal risks and uncertainties that affect our performance in our Form 10-K and other filings with the Securities and Exchange Commission.


HONEYWELL UOP AT A GLANCE

100+ Years of Global Expertise and Leading Technology Development

UOP TECHNOLOGY POWERS

- 90% of biodegradable detergents
- 70% of the world's polyester
- 60% of the world's gasoline
- 60% of the world's on-purpose propylene
- 60% of the world's paraxylene
- 50% of the world's renewable fuels
- 40% of LNG processed
- >30 Mtons of captured CO₂

NEW TECHNOLOGIES

Honeywell UOP creates new technologies that convert oil, natural gas, and renewable feeds into transportation fuels, energy, and petrochemicals

EXPERTISE

Broadest range of downstream refining and petrochemical technologies; leading process technology licensor

2,000Engineers and scientists

4,900
Active patents and applications

31 out of 36 refining technologies in use today were developed by

OUR PORTFOLIO SOLUTIONS FOR THE ENERGY TRANSITION

Process technologies, engineering, and equipment for the refining, petrochemicals, and gas processing industries

- Chemical feedstocks
- Transportation fuels
- Hydrogen recovery and purification
- Burners and flares
- Natural gas purification

Ready-now technologies for renewable low-GHG fuels, targeted solutions for a majority of the world's GHG emitters, H₂, and plastic waste recycling

- Renewable fuels, Ecofining[™], SAF
- Blue and Green hydrogen
- Carbon capture
- Plastics recycling UpCycle technology
- Energy storage Flow battery

Serving customers in the operational phase with catalysts, adsorbents, aftermarket equipment, and services

- Catalysts for refineries and petrochemical plants
- Adsorbents for separations and purification
- Field services
- Equipment aftermarket
- Software-enabled services to advance project execution and improve plant operations

ENERGY INDUSTRY PROFITABILITY AND TRANSITION

What our customers are telling us

Need to maximize profitability of existing assets:

- Continue need to produce fuels (esp diesel) with high yields...
- ...and with more challenging feeds

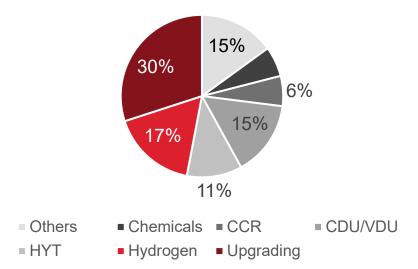
Shift to low carbon fuels is accelerating - SAF demand is very high

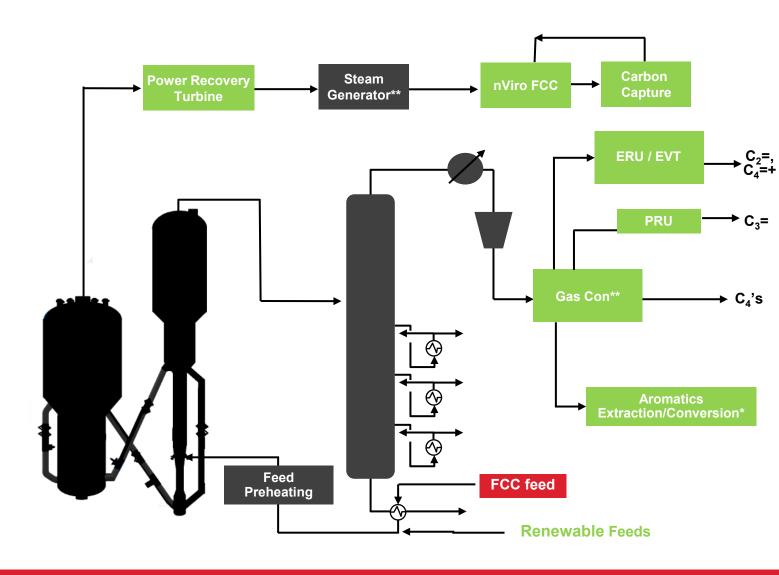
- Co-processing to increasing levels and to produce SAF
- Increase SAF yields through Ecofining
- FOGS are limited need to utilize alternate feeds

Shift to petchem is an opportunity:

- What solutions exist for refiners?
- On-purpose olefin production increase profitability and reduce GHG

Pressure to reduce GHG emissions:


- Scope 1 solutions are needed carbon capture
- Blue H₂ is an opportunity
- Scope 3 through product slate changes, feedstock changes



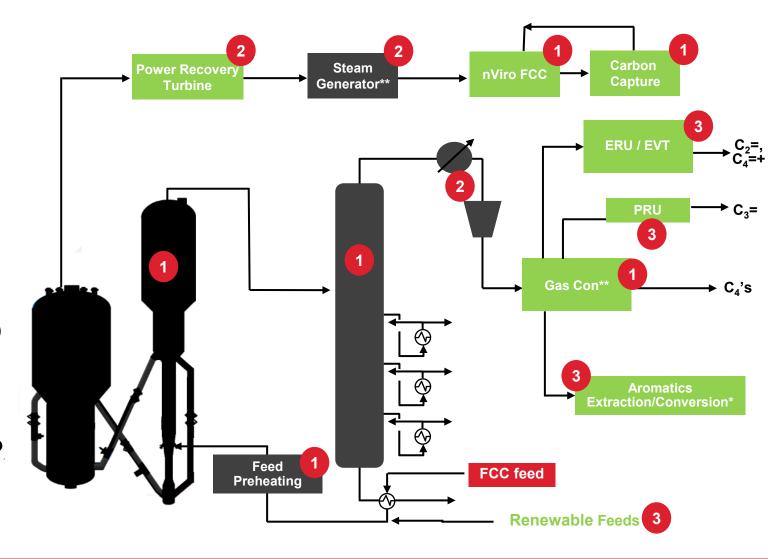
EXAMPLE: FCC SCOPE 1, 2 & 3 EMISSIONS REDUCTION

FCC UNITS:

- Generally used for gasoline production
- Significant point source of GHG
- Present in most refineries

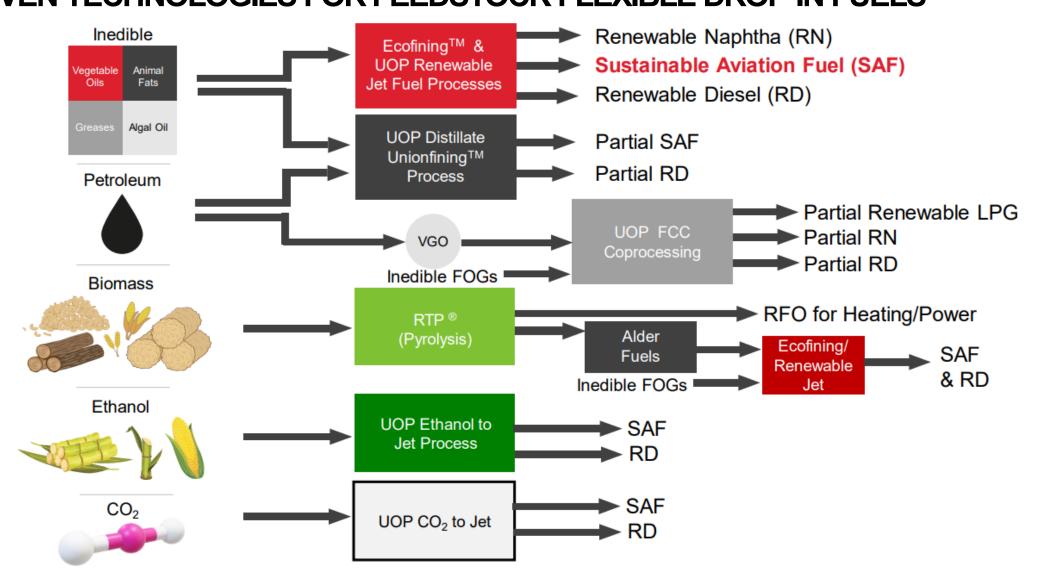
EXAMPLE: FCC SCOPE 1, 2 & 3 EMISSIONS REDUCTION

SCOPE 1

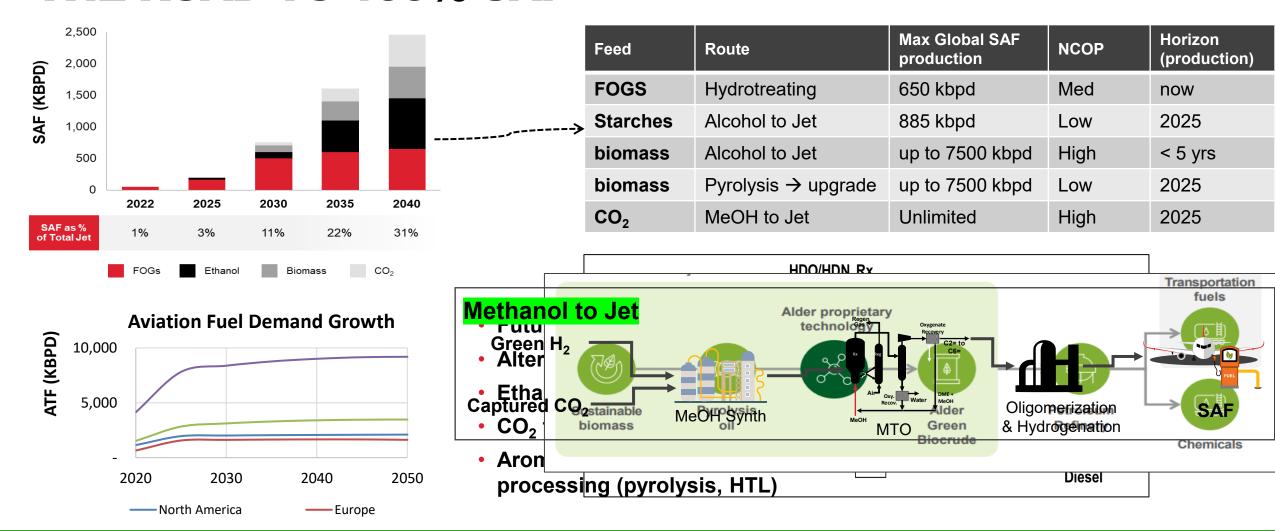

- Flue gas carbon capture
- nViroTM FCC
- Other efficiency Solutions

SCOPE 2

- Power Recovery Turbine
- Flue gas Steam Generation
- Thermal energy harvesting MC OVHD


SCOPE 3

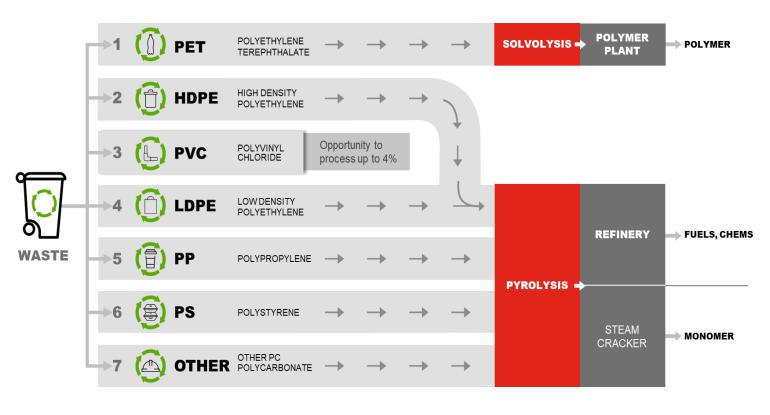
- Renewable Feed Integration
- Increased petchem production (C₃=, P
- Ethylene utilization



HONEYWELL

UOP RENEWABLE TECHNOLOGY SOLUTIONS PROVEN TECHNOLOGIES FOR FEEDSTOCK FLEXIBLE DROP-IN FUELS

RENEWABLE FUELS THE ROAD TO 100% SAF


Multiple routes to meet SAF demand growth

HONEYWELL UOP PLASTIC CIRCULARITY

- Honeywell's UpCycle Process Technology expands the types of plastics that can be recycled
- Targeting a "drop-in" intermediate recycled polymer oil (RPO) feedstock viable for Steam Crackers and downstream petrochemical producers
- Honeywell Advanced Recycling aspires to increase waste plastic circularity from 9% to 90%

Recycled Polymer Feedstock Properties

Specific Gravity	0.77-0.83	
Naphtha (wt%)	20-35%	
Distillate (wt%)	45-60%	
Gas Oil (wt%)	2-10%	
Sulfur (ppmw)	<500 ppm	
Nitrogen (ppmw)	<2000 ppm	
Chloride (ppmw)	<15 ppm	
Olefins (wt%)	25-50%	

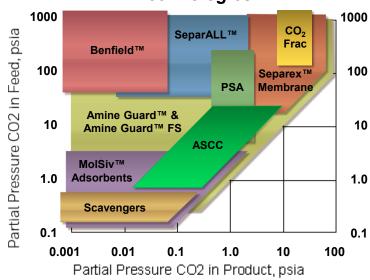
HONEYWELL UOP CO₂ SOLUTIONS

Chemical Solvents

- Amine Guard[™] & Amine Guard FS Process
 UOP is largest licensor of high
 concentration MEA-based systems;
 formulated solvents have lower Opex vs.
 MEA (> 600 units)
- BenfieldTM
 Totally inorganic solvent for pressurized flue gas & industrial processes (> 650 units)
- Advanced Solvent for Carbon Capture
 Direct CO₂ capture from flue gas for
 refining, power, steel, cement, and natural
 gas industries (seeking first commercial
 scale application)

Physical Solvents

• SeparALL[™] Process H₂S/CO₂ selectivity using Selexol solvent for sources containing sulfur or in oxidative conditions (>50 units)


Note: Solvent processes can be used in hybrid cycles with other technologies like PSA, membranes, and cryogenics to optimize CO₂ capture

Adsorbents

 PolybedTM Pressure Swing Adsorption (PSA) System

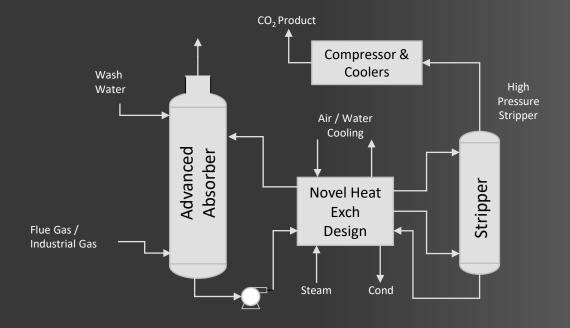
Optimized adsorbents and cycles for CO₂ rejection (>1,150 units, 3 operating in CO₂ application)

Regions of Use for CO₂ Removal Technologies

Cryogenics & Membranes

For capture of CO₂ at higher partial pressure

SeparexTM Membrane Systems


Significant experience in offshore capturing & sequestering CO₂ (>300 units)

Ortloff CO₂ Fractionation
 Not only captures but also provides CO₂ as a high purity liquid product (2 operating units)

UOP is leveraging existing technologies and expertise to deliver differentiation in new applications

Proven Technologies can be used for CO₂ Capture

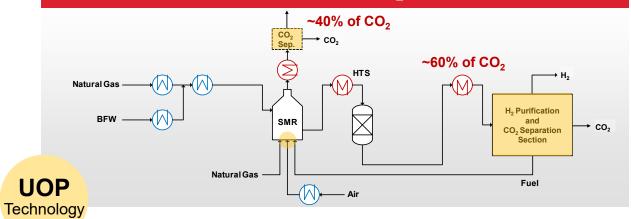
UOP NEW Technology - Advanced Solvent for Carbon Capture

Applications Include: Refining, Hydrogen Plants, Power, Steel, Cement, Natural Gas

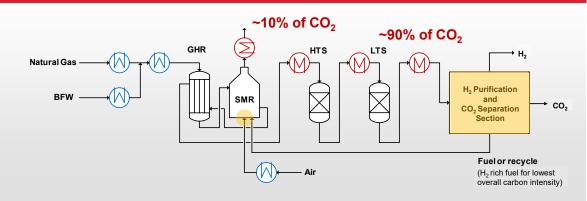
Patented Solvent with Optimal Properties

- High mass transfer rate smaller absorber
- Low heat of regeneration
- High stability
 - Enables higher pressure stripper & lower solvent makeup rates

Process & Equipment Design


- Advanced absorber with proprietary internals
- · Novel heat exchange tailored to solvent
- Reduced solvent regeneration heat duty and lean solvent cooling
- High stripper pressure → reduced CO₂ compression

Development Status


- Technology demonstrated for more than 2000 hours at NCCC with piloting at SRP
- · Ready Commercially available technology
- Modular Options up to 150kMTa of CO₂ Captured
- · License, Engineering & Solvent Supply for larger capture units

HONEYWELL UOP BLUE H₂ SOLUTIONS

SMR Retrofit with CO₂ Capture

SMR or ATR Optimized for Blue H₂

Tailored syngas section helps provide low-cost CO₂ capture for Blue H₂ solution

- Suitable for any H₂ generation technology or syngas stream including steam methane reforming (SMR), autothermal reforming (ATR), partial oxidation (POX), and gasification
- Optimized configurations using commercially proven UOP process technologies:
- Amine Guard[™] FS, Benfield[™], SeparALL[™],
 Ortloff CO₂ Fractionation, and Polybed[™] PSA
- Customized for H₂ and CO₂ end-use and overall project carbon intensity targets

Blue H₂ solutions customized to help meet sustainability objectives

SUMMARY OF CO₂ CAPTURE TECHNOLOGY OPTIONS

		Pre-Combustion		Post-Combustion
	UOP CO ₂ Fractionation System on Tail Gas	CO ₂ Polybed PSA on Tail Gas	AmineGuard FS on Syngas	Advanced Solvent System on Flue Gas
CO ₂ Recovery from Stream	>99% Liquid product	90-98% Gas phase product	>99% Gas phase product	>95% Gas phase product
Overall CO ₂ Capture	Depends on configuration of H_2 plant and % of total CO_2 in pre-combustion stream			95%+
Additional H ₂ Yield	10-20%	NO	NO	NO
Ultra High CO ₂ Purity	YES	NO	NO	NO
Steam Usage	NO	NO	YES	YES
Retrofit	Bolt-on	Bolt-on	May require main PSA retrofit	Bolt-on
Commercial Experience	YES, ref. units in similar applications	YES, ref. units in similar applications	Extensive	Exploring first commercial applications
Cost of CO ₂ Captured*, \$/MT	20–40 (includes H ₂ credit)	35–50	45–60	55-70

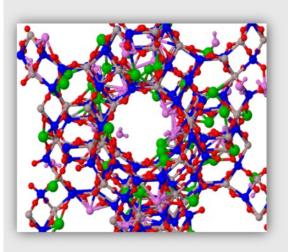
^{*}Cost of CO₂ captured includes operating costs, fixed costs, USGC basis annualized capital costs (10%/yr), and product value for additional H₂ production where applicable. Low end of range shown is for \$3/GJ (LHV) and high end of range is for \$6.6/GJ (LHV) natural gas price. CO₂ is provided as high-pressure product at plant battery limits and does not include CO₂ sequestration costs or any tax or credits for CO₂. Cost of CO₂ captured is subject to key variables - stream composition, CO₂ delivery requirement (pressure, purity, phase), utility price set, price of H₂, and geographic location; and is calculated based on internally developed models.

Best option depends on project requirements

HONEYWELL UOP TECHNOLOGY DEVELOPMENT IN R&D

Experienced Team

- 700 scientists and engineers from nearly 40 countries
- More than 400 employees have one patent, 18 have more than 50 patents


Cutting Edge Tools

- 150 pilot and semi-works plants in 8 sites globally
- Over 3.5 billion data points and 1000 off-line samples per day

- High-throughput screening tools
- Advanced microscopy and materials characterization

Unique Capability Set

- Materials discovery
- Catalyst invention
- Adsorptive and Membrane separations
- Process optimization and scale-up
- Proprietary equipment designs
- Modular plant delivery

Global Innovation

- Des Plaines, IL
- McCook, IL
- Mobile, AL
- Baton Rouge, LA
- Shreveport, LA
- Gurgaon, India
- Hiratsuka, Japan
- Shanghai, China
- ZhangJiagan, China

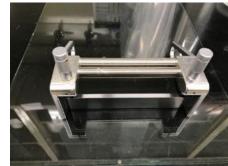
HONEYWELL

UOP GREEN H2 R&D CAPABILITIES

Polymers/Membranes/CCMs

- Polymer synthesis
- Membrane fabrication
- Conductivity/stability tests
- Ex-situ H₂ flux measurement
- CCM coating
 - Spray coating
 - Mayer rod coating
 - Slot die coating

Catalysts and Electrodes


- Catalyst synthesis and characterization
- Electron conductivity measurement
- Benchtop electrochemistry

PEM and AEM Electrolyzers

- PEM electrolyzer test units
- AEM electrolyzer test unit
- PEM stability and robustness test units
- AEM stability and robustness test units (in progress)

Polym./cat. syn.

Manual mem. casting

Contin. mem. coating

H⁺/OH⁻ measurement

Contin. mem. casting

PEM stability units

Spray coater

PEM/AEM Electrolyzers

H₂ permeation

Benchtop E-chem.

TECHNOLOGY FOR THE ENERGY TRANSITION

Decarbonization Challenge will require many solutions

Decarbonization will require a balancing act with profitability

Renewable fuels are here now, but need to greatly expand

Renewable chemicals are an opportunity, but can they compete with fuels?

Clean H₂ and Carbon Capture are important parts of the picture.

Thank you!!