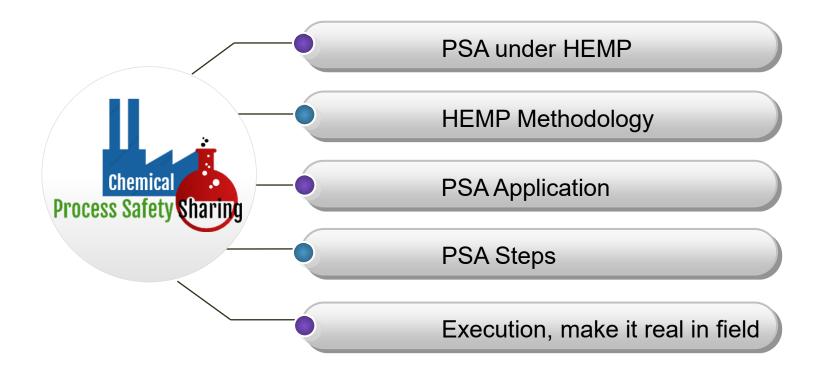


12th Chemical Process Safety Sharing (CPSS)

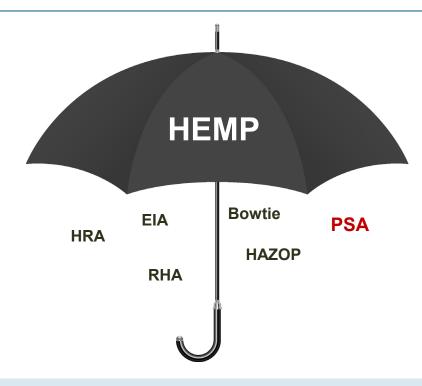
Process Safety Assessment (PSA)

Chanoknath Chanasumon Chanoknath@thaioilgroup.com

Thai Oil



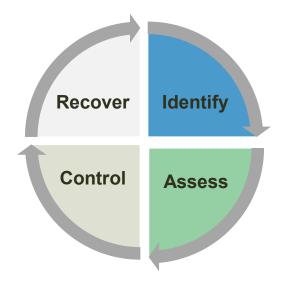
Contents Contents



PSA under HEMP

Hazard and Effects Management Process (HEMP), Refer Shell Global Solution

A structured risk analysis methodology that involves Hazard identification, Risk assessment, selection of Controls and Recovery Measures, and comparison with tolerability and As Low As Reasonably Practicable(ALARP) criteria. Example; HAZOP, PSA, Bowtie, RHA, FSR, QRA, HRA, EIA, ...



HEMP Methodology

HEMP – 4 Major stepsA Circular Quality Control Process

Identify

- What is hazards are present?
- Are People, Environment, Reputation or Assets exposed to these Hazard?

Assess

- Can the hazard be eliminated or minimized?
- What are Threats that can release the Hazard?
- What are the credible scenarios and how likely are they?
- What are the potential consequence?
- What is the potential likelihood of the hazardous event?
- What is the risk?

Control

- How are the hazards and their risks managed?
- What are the controls are barriers?
- How effective are the barriers and control?

Recover

- When a hazard is released, what are the recovery measures in place?
- How can the consequences be mitigated or minimized?

PSA Application

Process Safety Assessment

- It is used to assess existing assets.
- It uses the Risk Assessment Matrix (RAM) to assess the risk of each hazard present in the unit and focuses on system and units with RAM **High risk and High severity**.
- It is conducted by P&ID and field reviews.
- It assesses scenarios using Tolerability and ALARP criteria for consequences to people, assets, environment and reputation (PAER).

Assess the Safety, Integrity and Operability for compliance with Current Practices, Standard and Regulation.

PSA Step

Collect Data

01

02 Hazard & **Effect**

Register

03 Scenario & Barrier Identification

04 Barrier

05 **Tolerability** and ALARP **Assessment**

06 **Prioritize** Recommendation

- Prioritize

Peer Review & Report

07

08 **Gap Closure**

- Process Safety Information (PSI)
- MOC/Project in past 5 years
- Incident history/learning from incident

- Specify Hazard, Top Event, Consequence
- Assess risk ranking for Hazard and their consequence
- Walk through P&ID, line by line and check possible scenario and analyze worst credible final consequence
- Check design intent and design data for each scenario
- Check Effective. Independent. Auditable complying with LOPA DEP
- Check overpressure scenario to comply with ASME, API 521, DEP Overpressure
- Check specific barrier e.g ROV

- Assess standard and good practice compliance
- If scenario deviate from standard. ensure if barriers are enough
- Discuss **ALARP**

- Technical High/Medium/ quality check by Low criticality team and Process SME
 - Handshake result and recommendation to Unit owners and management
- Close recommendation to reduce risk in meet Tolerability criteria or make the barrier valid

Execution, make it real in field

1.HAZOP/PSA

2.Select
High Risk or
Medium risk
with high
severity
scenario

Major Accident Event (MAE) Management

A. Bowtie

Communicate MAE in Bowtie form to frontline

B. Safety Critical Barrier (SCE & SCA)

- SCE (safety critical equipment): Handled in the maintenance management systems, and performance standard required for availability and repair of SCE
- SCA (safety critical activity):
- Action after detection : Handle by operation and action recorded in Alarm Narrative and Abnormal procedure
- Preventive maintenance action following SCE performance standard

C. Pre-Incident Plan: PIP

• Emergency exercise to ensure plan to evacuate people, instruct people, activate fire protection system and mobilize emergency response team

Thank you for your attention

