TNChE Asia 2025

Integration of Electricity, Sustainable Feedstock, Methanol, Ammonia Technologies into Ethylene Plants

NAKAMURA Kenichi Senior Process Engineer, Process Engineering Div. TOYO Engineering Corporation

GIANINO Enrico Program Leader, Next-G Technology & Application Div. TOYO Engineering Corporation

© 2025 Toyo Engineering Corporation, All rights reserved

Company Overview

Company Name	TOYO Engineering Corporation	
Established	May 1, 1961	
	Head Office / Engineering Center Makuhari Technical Center 1-1, Nakase 1-chome, Mihama-ku, Chiba, 261-8601, Japan	
Location	Tokyo Office 16F, Hibiya Fort Tower, 1-1-1 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan	
Number of Employees	7,283 (including consolidated subsidiaries and companies applying equity method, as of March 31, 2024)	
Business	Design, procurement, and construction (EPC) of oil & gas, chemical plants, and infrastructure facilities, along with various related services	
EPC Services Provided by TOYO		

Your Success, Our Pride.

 $\ensuremath{\textcircled{\sc c}}$ 2025 Toyo Engineering Corporation, All rights reserved

Agenda

- Toyo's Solution for Energy Transition in Ethylene Plant
- 1 Electrical Furnace
- 2 Motorization of 3 Main Compressors
- 3 Hydrogen Firing from Ammonia Cracking for Furnace
- 4 Methane Offgas to Methanol Synthesis
- 5 Waste Plastic Recycle
- 6 Summary

O Toyo's Solution for Energy Transition in Ethylene Plant

Toyo's Solution for Energy Transition in Ethylene Plant

Toyo's Competency

- ◆ Vast Experiences of Ethylene EPC
- Ethylene Plant OSBL Design Optimization

Approaches to Ethylene Plant Decarbonization

- ◆ Energy Saving and CO₂ Reduction
- Energy Transition (Ammonia, Hydrogen, Electricity etc)
- Feedstock Transition (Biomass, Recycle etc)

Toyo's Solutions for Ethylene Plant Decarbonization

- Energy Transition Technology
 - Electrical Furnace
 - Motorization of 3 Main Compressors
 - Hydrogen Firing from Ammonia Cracking for Furnace
 - Methane Offgas to Methanol
 - Waste Plastic Recycle

Toyo's Solution for Energy Transition in Ethylene Plant

Feature of Energy Transition for Furnace

Feature of Energy Transition for Furnace

© 2025 Toyo Engineering Corporation, All rights reserved

Electrical Furnace Development Status

Technology Holders	Partner	Heating Method	Situation
Linde	BASF SABIC	Direct / External Residence	In Sep. 2022, announce the construction of demo plant (1 MTA, 6 MW) Start demo plant operation in 2024
Lummus	Braskem	External Residence	Announce Joint Study with Braskem in Apr. 2024 Start demo plant operation in 2025
Technip	LyondellBasell's CPChem	External Residence (assume)	MOU in Jun. 2023 Plan to construct demo plant at Texas, USA
TNO (Institute in Netherland)	Dow Shell	External Residence	Plan to start demo plant in 2025

✓ Development is proceeded all over the world by major Licensors.

✓ Demo Plant operation already started (Linde/Lummus).

Other system verification

✓ Steam balance to be revisited due to less steam generation in electrical furnace

✓ Utilization of methane offgas to valuable chemical (Ex. Methane to methanol, etc.)

In addition to steam balance verification, TOYO can support other system's verification like Electrical system, Layout and Flare adequacy.

Verification System	Verification Points
Electrical	✓ Type of Motor selection
	✓ Variable speed drive (VSD) type selection
	 Study of new substation and impact on existing electrical system
Layout	✓ Larger motor length than turbine
	✓ Gear feasibility for huge capacity motor
	✓ Foundation Modification
	✓ Maintenance Space
Flare	✓ Impact of motorization of CGC, PRC and ERC trip during total power failure scenario

B Hydrogen Firing from Ammonia Cracking Ammonia Cracking

TOYO aim to shift energy use from **fossil fuels to hydrogen** by utilizing ammonia as a **hydrogen carrier**. Among several hydrogen-related technologies—such as ammonia combustion and cracking—TOYO propose **ammonia cracking** for this case in order to **minimize the modification on Ethylene Cracking furnace**.

Ammonia Cracking

TOYO ENGINEERING

TOYO will provide Ammonia Cracking Technology with KBR

"Hydrogen from Ammonia Cracking Technology" H2ACT® Licensed from KBR

1. Proven Technology

Use well-proven KBR reactor, with decades of successful design and reliable operation

2. Flexible Capacity

Hydrogen Production : 10 - 1,200 MTPD

3. Reduces Greenhouse Gas Zero emission flow scheme

Methanol Synthesis

Methanol Synthesis

Instead of flaring or burning methane off-gas, TOYO propose converting it into methanol, a valuable chemical and fuel.

Methanol production is **TOYO expertise**, built on decades of

TOYO offer proven, efficient, and scalable technology with

4 Methane Offgas to Methanol Synthesis

Methanol Synthesis

Methanol Synthesis

Utilizing Established Technology for Sustainable Methanol Production

* Converted into natural gas feedstock case

4 Methane Offgas to Methanol Synthesis

Methanol Synthesis

Concept of MRF-Z[™] Rector: Realizing an ideal temperature profile through multi-stage cooling, designed with minimum catalyst quantity

Methanol Synthesis

Combining off-gas utilization with g-methanol[™] technology enables deeper decarbonization by converting waste methane into valuable product & fuel.

Waste Plastics Recycle

Sustainable feedstock for green plastics

Waste Plastics Recycle

TOYO and Circular Plas Co., Ltd. are jointly developing Waste Plastics Advanced Recycling Process since 2022 for commercialization.

Successful Installed The New Type of The Reactor at Circular Plas Co., Ltd Circular Plas Co., Ltd Demonstration Plant in Rayong

In 2025, we will launch our newly developed reactor, beginning its commercial application.

Towards Energy Transition

By integrating TOYO's technologies—ammonia cracking, e-methanol production, and advanced plastic recycling—TOYO enable comprehensive decarbonization of the ethylene plant.

