

Best Practice: Digitalisation of Operational Safety for O&M Practical Strategy

Misuari Rahman (Hexagon ALI - ASEAN)

Danial Shafiq A Latif (Petronas – IVA Upstream)

Contents

Challenges | The Case for Change

Peeling the Layers for Process Safety

Application of the Right Tools | AMS, IPL, Boundary & CLPM

Digitalisation & Centralisation | Used Case Adaptation

Value Creation | Policing to Consulting

Case for Change | Operations Value Leakage from Data Searching

HEXAGON

"Engineers typically spend 30% of their time looking for information. A digital thread provides a means to significantly reduce this value leakage." - ARC Advisory Group, 2021 –

Our customers locate data & document 30 – 50% faster with 50% travelling time reduced for verification at site

Case for Change | Challenges of Performance Monitoring

Manual Intervention

80% time spent on data extraction & reporting – leading to human error

Localised Data

Data resides in local machine and is unavailable online for interaction with other digital solutions

Reactive

No early warning indications on equipment performance & deterioration

Automated Updates

Automated data retrieval and report generation with virtual analyser functionality

Data Centralisation

Online server with hourly data generation, ready for integration with any digital application

Predictive

Visualizing integrity & performance of instrumentation and control system to make more informative decisions

Conservative Approach

Future

Case for Change | Aspiration of the Future – Operations Vision

Effective Alarm System

Optimized Control Loops

Safe Operating Limits Managed & Monitored

Effective Operator Situation Awareness

Full Visibility and Control of Safety System Status

Fully Digitalized Logbooks, Permits, Duties, etc.

Actionable KPI's

Layers of Process Safety – Only For Governance?

Process Safety Layers | Measure to Improve

Reference | API 574

- **Conceptually based on the "incident pyramid"**
- □ Identifies leading and lagging process safety indicators to drive performance
- □ Tier 1 is the most lagging, Tier 4 is the most leading
- □ Tiers 1 and 2 are measure of actual releases and may be used for national reporting
- **□** Tiers 3 and 4 are intended for internal or site use

Evacuation Process Relief & Containment Trip/SIS Activation/Unit Shutdown Alarms and Operator Interventions Regulatory Control Loops Procedures and Management Systems

Measuring, understanding, and improving leading indicators (Tier 3 and 4) can prevent Tier 1 and Tier 2 events from occurring

Metrics Drive Actions!

Operational Risk Management

Hexagon Solutions alignment to Layers of Protection Analysis Framework

Hexagon is uniquely positioned to provide the most complete and comprehensive Barrier Management solution to the market.

Link to infographic

Alarm Management Document | Journey of Excellence

HEXAGON

TNChE Asia 2025

Use Case: 1. Alarm Management Analysis Tools

Integrated AEA & D&R = MASTER ALARM DATABASE (MADB)

Analysis:

Start date

End date:

🚾 Frequent Alarms

SAFSHOF

59FI238

61FC159

59A10002

61TI8502

61FC162

68PC101

61FA140

61FA130

61TI8256

59LH525

61AI171

61FA220

61FA120

61FA110

C1EA010

H2SFL

Frequent Alarms

OFFNORI

PVHI

PVLO

PVHI

PVHI

PVLO

PVHI

YES

YES

PVHI

PVLO

YES

YES

YES

VEC

OFFNORM

OFENORM

Document Alarms

- Causes
- Consequences •
- Corrective Actions
- Classification

Classify Alarms

- Process Performance
- Equipment safety
- Your Classification System

Rationalize Priorities

- Impact / Severity / Maximum Response Time
- Priority and Trip Point for each process state
- Template based work process
 - Create templates from any alarm
 - Apply templates to any alarm

Automated Realtime MADB Audit

Use Case: 2. Control Loop Performance Management

Use Case 3. IPL - Safety Lifecycle Management in Operations

hexagon.com

IPL Assurance – Instrument Protective Function

- Improves plant safety and operational awareness of Independent Protection Layer (IPL) performance.
- Optimizes plant resources by automating IPL integrity reporting.
- Provides an audit trail for IEC and OSHA compliance.
- Consolidates important IPL information.

Solution

Comprehensive Solution To Aggregate Information From Disparate Sources To Help Monitor Performance and Visualize Risk

Digitised Safety System Management

IPL Analytics

Configuration and Design Data for Each SIF

Design Time, Process Safety Time, Testing Interval, Risk, Consequence, Severity, SIL Level, etc. Safety System Performance Analysis and Reports

Analysis Safet	y System Test Sc	helde		1	Parameter	adda): (A.PASTIC)	AGyree	with .		. 3								
Start date:		Data con	er Gas Pier	(Cone	Stone: Selected Au	est: Gas)	Part: Show a	abhrider cont	terits Tue								
Evidate		Team																
Pun Analysis	Custom.	This Morth	The Quer	w) [1	aat.Year	This Year	Tada;	Las	Month.	Lest Quarter	Yesterday	Last	Days .					۲
Drag a column	teader here to	group by their	column.															
10	Name		· Type ·	11	De	a cription		Equipment	· Dan Dat	a in Overdan i	Days Orand	ten ∑÷	Hitigand P	lick = Urenitigated Flick	· Consequence	· Severity ·	SIL .	· Protect
101 IC			IA.	141				30	IA.	16.	=		8.	W1	14.	M.	30	IA.
+ 4215D//005			Bettert	Inlet Co	np. Discher	ge Sdv	-	Compresso	922214	Yes		675					-	
4211/20284			Benet.	Inlet Co.	rup. Seal Ga	s Superheater		Compresso	22/2016	Yes		157						
464701 - Sup	enheater Trip		Function	FUEL G	AS SUPERH	EATER TRIP		Heaters	628201	6 Yes		10			Safley Impact			
447P2HH008	- Filter Inlet Pro	source High High	Function	Filter Inl	et Pressure	High High		Separators	628207	6 Yes		10		Minor		Safey Seventy 3		
42150//004			Dament	Inlat Co	np. Suct Sc	rubber Cond. Str.		Compresso	628001	6 Yes		10						
421121.1002	Soubler Level	Lostav	Function	Stiet Co.	rep Suct Sc	rabber Level Law L	aw.	Compressa	630/201	G Yes		1	Major				51.7	1
443TV101 - M	EG Reboiler		Benet	Meg Rel	bailer Tv (N	og Regeneration Un	6	Bailer	710916	Yes		7						
4C4330			Benerit	4:4330	Fuel Gen Si	oply 5ev		Pumps	713/201	6 No		- 6						
421P2LL003	Pressure Low L	D#	Punction	Inliet Cor	np. Suction	Pressure Low Low		Compresso	721201	6 No		-13					58, 5	5 (L
42150//007			Detret	Inlet Co	ng: Seal Ga	e Supply (Export C	ias) Sd.	Compresso	7023001	6 No		-14						

Process and Event Data from the control system

SIF Activation, Success or Failure Verification, Bypass, Un-Bypass, Test, etc.

Use Case: 4. Boundary Management

New Edit Delete Exp

Inbound – Integrating SDL/SOL/NEL/MDL

Where to Consolidate it? The Master Alarm Database

MADB Capabilities

- Secure, with controlled access
- Create a new section for mapping SIS/SIF/IPLs
- Link to the correct DCS and SIS sensor points for monitoring and analysis
- Correct "single truth" is now in an MOC-controlled environment

Applications Configure Status Window Help | 🏣 🔐 🏠 🐚 🖓 👯 📲 🔕 🕮 🔚 🍇 📐 | 👺 🍑 📑 🔚 🌾 📆 mine Scrubb FAL575 Gire Bfly/Ler FC000 Coboiler Import \square Compresso FC000 🕆 Coolina Towe EC0003 H1 SE COI Debutanize Depropaniz DMC Fluid Varms: 35 Parameters: 6 Environmental Trip Point V+ Approved V+ Y P Alarm Y P State Y P Configured Y P Tag FC0001 PVI I Default NOACTION NOACTION 🔐 H-10 CO00 PVI 0 H-1 Startup Yes NOACTION NOACTION 🕅 General Plar IPI Reliabilit R Heat Med/Slurr H-1 DOWN Yes 250.0000 A Main Air Blowe EC000 PVI 0 250 0000 🕅 Main Frac O Corrective Actio Reactor Coke buildup in the tube Check pressure trends May need to take the coil down for maintenan 🕯 Regen Temp Plugged Straine 2 Regenerato A Solitter Valve malfunctio Check local 🛱 Utility 1 🛱 Utility 2 Consequenc Wet Gas Scrubb Low flow trip of the heater, loss of product 🚞 zDemoDa Greenfield Impact **New Boundary** Constrained By ☑ Constraint Value ☑ Validation w Flow Trip Limit.Defa $\{M\} > \{C\}$ Section 0001 Lower Normal Limit Defau **New IPL** Section HEXAGON

Boundary Excursions are detected, analyzed, and automatically reported.

SIF Activations are detected, analyzed, and automatically reported.

Case Study – Oil & Gas, Refineries, PetroChem Industries Company

- 1. Improve safety by reducing Process alarm per hour per operator and having real time critical data, Managing Bypass and Critical Boundary
- 2. Improve production by monitoring and react on the nonperforming controller

3. Reduce Unplanned Shutdown by reacting to analysis on every Protection Layer as and indication of Performance

 Process Alarm – Loop Performance – Boundary – Safety System Analysis

Policing to Consulting

Digitalization of Reliability and Integrity Management Physical Asset Management of 4 Operational Goals

PRAISe is a integrated physical asset management system that capable to do criticality analysis, reliability & integrity data calculation and ITPM* strategy assessment in a single platform.

	Reliability & Availability Calculation Module,	FMEA-RCM Module, SCE Identification & SCE SSPS
•	Management Dashboard Module,	Repository
•	Asset Register Module,	 Reliability Block Diagram Calculation,
	Anomaly Management Module	Life Data Analysis Module
	Equipment Criticality Analysis,	And many more

Policing to Consulting

Linetreen	Indianti	ve Dreeses Sefety	Dorfe		diestore	
Opstream	inuicati	ve Process Salety	Penc	prmance in	dicators	
			al Alarms	Average Alarm Rate	Alarm Type	
Back to Monthly View		Ataims	2,090	1	All 🗸	
Tag	Alarm Alarm Typ	e Point Description	Priorit	y Count Chattering Rep	etitive First Timestamp	
TCP2_AI1:B_TI5521	HIABS Process	TRN 2 1ST STG DISCH TEMP	3	402	4/25/2022 6:12:30 AN	
B_HOT_OIL:B_LT6400	LOABS Process	V-507 INTERFACE LEVEL	2	167	4/23/2022 9:36:43 PM	
B_LP_SEP_ABC:B_LT5070	HIABS Process	V-507 INTERFACE LEVEL	2	138	4/23/2022 2:44:24 PN	
3_OILY_WTR:B_LT5850	HIABS Process	V-585 INTERFACE LEVEL	3	79	4/25/2022 4:53:39 PN	
CSDP_CGCE:PZT6031_EN	HIABS Process	PZT-6031 ENGINEERING VALUE	2	43	4/23/2022 9:17:50 AN	
489MF_CIN:XS_54320_B	STATE Others	TURBINE1 ENCLSURE COM.AIR 60%LE	L 2	42	4/23/2022 7:06:56 AN	
489MF CIN:XS 54321 B	STATE Others	VENT EXH 60% LEL	2	42	4/23/2022 7:07:00 AN	
PRE TREAT:PT6070	HIABS Process	A6070 CO2 REMV FUEL GAS INLET	2	42	4/23/2022 9:17:49 AM	
LB WHCP DI1:BPZT04S MC	STATE Others	MOS CNFIRM-WELL B04S HI-LO PILO	T 2	39	4/23/2022 8:21:41 PM	
UEL GAS:PT6030	LOABS Process	V6030 FG SCRUBBER TO FLTR COALS	2	37	4/23/2022 9:36:03 AN	
FUEL GAS:PT6030	HIABS Process	V6030 FG SCRUBBER TO FLTR COALS	2	35	4/23/2022 9:17:51 AN	
CGCE TCP ALPT2450	LOABS Process	HPC 1 SUCTION GAS PRESS	2	29	4/23/2022 7:06:32 AN	
ICP2 AI1:B TI5575	HIABS Process	TRN 2 2ND STG SUCT TEMP	2	25	4/23/2022 2:12:42 PM	
CGCE CSDPB PZAHH6075D	STATE Process	PZT-6075 HIGH-HIGH ALARM	1	19	4/23/2022 11:17:56 A	
CSDP_CGCEPZT6075_EN	HHABS Process	PZT-6075 ENGINEERING VALUE	1	19	4/23/2022 11:17:58 A	
CP2 DI1:B XI 55311	STATE Others	GCM TRAIN 2 STOP	2	19	4/23/2022 9:40:11 AM	
B_SURGE_ABC:B_LT5080	LOABS Process	V-508 CRUDE LEVEL	2	17	4/23/2022 9:23:19 AN	
CSDP_CGCE:PZT6075_EN	LLABS Process	PZT-6075 ENGINEERING VALUE	1	17	4/23/2022 9:37:04 AM	
B HP SEP ABC B LT5041	LOABS Process	V-504 CRUDE LEVEL	2	14	4/23/2022 10:27:43 A	
SAS COND:B FT5532	LOABS Process	SEAL GAS FLOW (SKID 2)	1	14	4/23/2022 9:39:13 AM	
BOILY WTR B I T5851	HIARS Process	V=585 CRUDE LEVEL	2	13	4/23/2022 10 58 19 A	
GCE TCP AIPT2435	HIABS Process	LPC 2 SUCTION GAS PRESS	-	10	ALCOLOLE TO OUT A	
GCE TCP AI:PT2436	LOABS Process	LPC 2 DISCHARGE GAS PRES	Freque	nt alarms ap	pear for consecut	tive weeks. Steps by steps
PRE TREAT B PT6071	LOABS Process	A6070 CO2 REMV FUEL GAS I				
CP2 AI1 B PI5521	LOARS Process	TRN 2 1ST STG DISCH PRESS	trouble	shooting init	iated	
CP2 AI1 B PI5575	LOARS Process	TRN 2 2ND STG SUCT PRESS		Shooting int	incen.	
CD2 DI1-D VI 66201	CTATE Others	TI IDD 2 IDI C	PRIME	ADB has helr	oed PMA in FARI	Y DETECTION of deformed transmi
	Region	Field Year				
Legends	PMA	V Dulang V 2022	V April	~	Last Update	

Creation: RM 700k

Win the Day: ADB - LP Separator Level Transmitter

Approx. Value Creation: RM 700k

Win the Day: IPM – High SCE Bypass

Approx. Value Creation: USD 10mil

- 29 prolonged bypasses has been identified during bi-weekly sitting of Offshore platforms.
- Collaboration between Instrument, Frontliners, Asset team, Process Technologist to chart way forward for each tags.
- 17 bypassed has been normalized related to current operating and parameter and setpoints.
- 12 SSBOC with details discussion between SMES, PTS-PSM and Operations.

Policing to Consulting

Process Safety KPI

[Open]

PSPI KPI Reporting Flow

Manual PSPI Management Reporting

Process Owner : Process Safety Engineer, Prod Supt., Instrument Technician, Instrument Engineer, HSE Process Safety Engineer

		PSPI Reporting Process											
No	Required Data Input		Data Co	llection		C	ata Process	ing & Analys	sis		Output 0	Collection	\frown
		Method	PIC	Lead Time	Accuracy	Method	PIC	Lead Time	Accuracy	Method	PIC	Lead Time	Accuracy
1	Average Alarm/hour/operator	Manual Extraction from DCS	Prod Supt / Instr Tech	2.0	Accurate	Manual analysis using Excel	Instr Eng	2 dava	Less Accurate	Manual Collection from PIC	Process Safety Engineer		Less Accurate
2	Peak Alarm rate/10 minutes	Manual Extraction from DCS	Prod Supt / Instr Tech	5 Days	Accurate	Munual analysis using Excel	Instr Eng	5 days	Less Accurate	Manual Collection from PIC	Process Safety Engineer		Less Accurate
3	IPF Fail on demand	Manual Extraction from DCS	Prod Supt / Instr Tech		Less Accurate	Manual analysis using Excel	Instr Eng		Less Accurate	Manual Collection from PIC	Process Safety Engineer	1 Day	Less Accurate
4	IPF activation on demand	Manual Extraction from DCS	Prod Supt / Instr Tech	2 Days	Accurate	Manual ana ysis using Excel	Instr Eng	1 Day	Accurate	Manual Collection from PIC	Process Safety Engineer		Accurate
5	NEL Excursion	Manual Extraction from DCS	Prod Supt / Instr Tech		Less Accurate	Manual analysis using Excel	Instr Eng		Less Accurate	Manual Collection from PIC	Process Safety Engineer		Less Accurate
	TOTAL LEAD TIME & ACCURACY LEVEL			6 Days	Less Accurate			4 Days	Less Accurate			1 Day	Less Accurate

Process Safety KPI Reporting from 9 days to 1 day with accuracy and validated data – via Hexagon PSI

Process Owner : Process Safety Engineer, Prod Supt., Instrument Technician, Instrument Engineer, HSE Process Safety Engineer

		PSPI Reporting Process												
No	Required Data Input		Data Co	llection		D	Data Processing & Analysis				Output Collection			
		Method	System	Lead Time	Accuracy	Method	PIC	Lead Time	Accuracy	Method	PIC	Lead Time	Accuracy	
1	Average													
	A larm/hour/operator													
2	Peak Alarm rate/10									Manual	Process			
	minutes	Automatic data capturing from DCS		Real Time	Accurate	Automatic Analysis using Software	PRIME	Real Time	Accurate	Analysis Using PRIME report/Dash board	Safety Engineer/HS E Process Safety Engineer	1 Day		
3	IPF Fail on demand		data capturing from DCS										Accurate	
4	IPF activation on demand													
5	NEL Excursion													
Т	OTAL LEAD TIME & ACCURACY LEVEL			Real Time	Accurate			Real Time	Accurate			1 Day	Accurate	

Plant Digital Data Model Structure Overview

Components of Operational and Maintenance Management - VISION

3 Take-aways

- **Practical Digitalization** Hexagon can help customers expand and interconnect their digitalization, unlocking new potential for their business and increasing potential benefits through a holistic and integrated approach.
- Interoperability Centralize and visualize all types of asset information from data historians, the CMMS, the DCS, EAM, PLC and SCADA systems.
- Smart Digital Reality Bringing It All Together Using our Smart Digital Reality, you can deploy a comprehensive digital twin with Current Technology that enables an information management data ecosystem that's built and maintained throughout the asset lifecycle, allowing for a continuous journey of operational excellence.

Come and visit us at Booth D6!

