

Energy Integration with a Benign Environment Approach in the ECO-PAG Project

Presented by

PTT Public Company Limited

TNChE ASIA 2025

5th ENERGY COP CONFERENCE

2

SPEAKER

MR. Bhumphong Rajcharak

Senior Process Engineer

Process Engineering & Optimization Division Rayong Gas Separation Plant PTT PLC

- ABOUT PTT
- Environmental Problems
- What is ECO-PAG?
- Application of Heat Recovery Section

PTT'S BUSINESS

GSP: ROLE & RESPONSIBILITY

Gas separation plants are responsible for separating different types of hydrocarbon component from natural gas, in order to create massive added value of natural gas

> To Ensure Thailand's Energy Security (LPG Domestic)

> To manage and control natural gas quality (Control Heating value of Natural gas to Power Plant)

To create added value of natural gas (Petrochemical) 5

GSP'S PROCESS OVERVIEW

Total (Tanks)

5 Tank

NGL

Ine process extracts mercury (Hg), Carbon dioxide (CO₂) and absorbs water from natural gas.
2. Cryogenic Section greatly reduces the pressure and temperature of natural gas, converting it into liquid, Methane is separated in this session.

3. Fractionation Section involves the use of the fractionation distillation process by which Ethane, Propane , LPG, NGL are separated at the boiling point of each product.

Environmental Problems Arising from Gas Separation Plants

Environmental Effects Caused by H₂S Emissions Odor:

 H_2S has a strong, foul odor detectable at very low levels, which is a major source of complaints in air pollution.

Environment impact:

 H_2S is part of the sulfer cycle and can contribute to acid rain formation when oxidized to SO_2 .

Solution to Waste Gas Emission from the AGRU Unit

To address the issue of H_2S emissions into the atmosphere from natural gas plants, the ECO-PAG Project has been implemented. This project effectively removes H_2S and helps reduce the environmental impact of harmful gases.

Community of Practice TIChE

Ecological Purification Acid Off Gas (ECO-PAG)

Figure 1: Overview of ECO-PAG

Overview of ECO-PAG Project Components

The Ecological Purification Acid Off Gas (ECO-PAG) Project consists of three units:

- Regenerative Thermal Oxidizer (RTO)
- Quencher and Scrubber
- Zero Liquid Discharge (ZLD)

Pollutant Gas Treatment Equipment

There are two types of available pollutant gas treatment equipment for selection in the ECO-PAG Project.

Figure 3 : Regenerative Thermal Oxidizer

ΙΟ

Pollutant Gas Treatment Equipment: Gas Incinerator

Figure 2 : Gas incenerator

Design and Operation of Gas Incinerator

Incineration of Gas in the Combustion Chamber:

- Waste gas is incinerated in a vertical chamber, retaining flue gas for 2 seconds at 850–950°C.
- Lined with refractory bricks and insulating castable, with a bottom burner and viewing ports.
- · Platforms and ladders allow access to burners and sensors.

Operating Control:

- Excess air is supplied by a centrifugal fan through a toroidal channel and multiple nozzles.
- · Flame arrestors are installed to prevent backfire.

Temperature Control:

- Burner management system ignites, monitors the flame, and shuts valves on flame failure.
- Fuel gas heats the chamber during startup until the minimum temperature is reached, then waste gas is introduced.

11

Pollutant Gas Treatment Equipment: Regenerative Thermal Oxidizer

Video 1 : Regenerative Thermal Oxidizer

Advantages of Ceramic Layer

- Heat Retention Efficiency: Ceramic beds efficiently store and release heat, improving the combustion process and reducing fuel consumption.
- Heat Recovery: Ceramic beds help recover heat from the exhaust gases, reducing energy loss and allowing reused energy for other processes.
- Energy Cost Reduction: Heat recovery from ceramic beds lowers the energy needed for waste gas combustion, reducing operational costs. (30-70%)
- Long Lifespan: Ceramic beds are highly resistant to corrosion and high temperatures, leading to longer service life and reduced maintenance needs.

Pollutant Gas Treatment Equipment: Regenerative Thermal Oxidizer

Video 1 : Regenerative Thermal Oxidizer

Sequence Operation

Each of the 5 chember passes cyclically through three phases :

- Preheating phase
- Cooling phase
- Purging phase

Each cycle of operation is like the previous one, so the outline is repeated the same each time.

A and C: preheating B and D: cooling E: purge A and D: preheating B and E: cooling C: purge B and D: preheating C and E: cooling A: purge B and E: preheating A and C: cooling D: purge C and E: preheating A and D: cooling B: purge

Comparison of Two Types of Pollutant Gas Treatment Equipment

Figure 2 : Gas incenerator

Comparison Table between Incinerator and Regenerative Thermal Oxidizer

	Incinerator	Regenerative Thermal Oxdizer
Heat recovery rate	60%	95%
Running cost	High	Low

Energy consumption is reduced by approximately 58% when comparing the Incinerator and RTO, with the RTO having a higher heat recovery rate than the Incinerator.

Due to the **use of a ceramic bed** for energy recovery from exhaust gases, the RTO is able to reduce fuel consumption for subsequent operations.

Figure 3 : Regenerative Thermal Oxidizer (RTO)

Two Types of Zero Liquid Discharge

Principle of Zero Liquid Discharge

Figure 5 : Zero Liquid Discharge

14

Waste Heat Recovery Concept in ECO-PAG Project

Hot gas from the Regenerative Thermal Oxidizer

Figure 3 : Regenerative Thermal Oxidizer

Hot gas from the Regenerative Thermal Oxidizer

Approximately 10% of the exhaust gas from the Regenerative Thermal Oxidizer at a temperature of 800-850°C will flow into the <u>heater to exchange heat with</u> <u>hot oil</u>, raising its temperature from 130°C to 170°C.

Application of Heat Recovery Section

Conclusion

Advantages of Selection Pollution Control Equipment

Figure 6 : Overview of ECO-PAG

User Integration for Heat Recovery Section

Zero Liquid Discharge

Energy Savings:

due to

- RTO recycles heat.
- Vacuum Evaporator operates at lower temperatures.

Cost Reduction:

Both reduce energy and operational costs due to

- Vacuum Evaporator cuts waste disposal costs.
- RTO reduces fuel and maintenance costs.

Environmental Impact:

Both reduce emissions due to

- RTO burns pollutants efficiently.
- Vacuum Evaporator reduces liquid waste and aids water conservation.

Presented by

PTT Public Company Limited

TNChE ASIA 2025

5th ENERGY COP CONFERENCE